Явление Гиббса /л24/.


Большинство методов анализа и обработки данных представляют собой или имеют в своем составе операцию свертки множества данных s(k) с функцией оператора свертки h(n). Как множество данных s(k), так и оператор h(n), выполняющий определенную задачу обработки данных и реализующий определенную частотную передаточную функцию системы (фильтра), могут быть бесконечно большими. Практика цифровой обработки может иметь дело только с ограниченными множествами данных (k = 0,1,2,…,K) и коэффициентов оператора (n = 0,1,2,…,N или n = -N,…,1,0,1,…,N для двусторонних операторов). В общем случае, эти ограниченные множества "вырезаются" из бесконечных множеств s(k) и h(n), что может весьма существенно сказаться на характеристиках функций.

Чаще всего с изменением частотных характеристик функций приходится сталкиваться при усечении операторов фильтров. На примере усечения симметричных операторов и рассмотрим характер происходящих изменений.

При расчетах фильтров, как правило, задается определенная передаточная характеристика H(w) фильтра и по ней производится расчет оператора фильтра h(n), количество членов которого может оказаться очень большим даже только по значимым значениям. Усечение может рассматриваться, как результат умножения функции оператора фильтра на селектирующее окно длиной 2N+1. В простейшем случае это окно представляет собой П-образную селектирующую функцию, которую называют также естественным временным окном:

hn = h(n)·ПN(n), ПN(n) = 1 при |n| £ N,

ПN(n) = 0 при |n| > N.

Функция h(n) оператора фильтра, в пределе бесконечная, обуславливает определенную частотную передаточную характеристику фильтра H(w). Полному оператору h(n) соответствует исходная частотная характеристика H(w):

H(w) = h(n) exp(-jwn). (3.1.1)

Сущность явления Гиббса. Функции во временном окне селекции ПN(n) в частотном пространстве соответствует спектральная функция, которая в определенной степени должна отличаться от функции H(w). Очевидно, что при усечении оператора h(n), а значит и ряда Фурье (3.1.1), до конечного числа членов N мы будем иметь усеченный ряд Фурье:

HN(w) = h(n) exp(-jwn), (3.1.2)

при этом сходимость суммы остающихся членов ряда HN(w) к исходной передаточной функции H(w) ухудшается и происходит отклонение частотной характеристики фильтра от первоначальной в тем большей степени, чем меньше значение N. Особенно ярко это проявляется на крутых перепадах (разрывах, скачках) в передаточных функциях:

- крутизна перепадов "размывается", т.к. она не может быть больше, чем крутизна (в нулевой точке) последней сохраненной гармоники ряда (3.1.2);

- по обе стороны "размытых" перепадов появляются выбросы и затухающие осцилляции с частотой, равной частоте последнего сохраненного или первого отброшенного члена ряда (3.1.1).

Эти эффекты при усечении рядов Фурье получили название явления Гиббса. Рассмотрим явление Гиббса более подробно на примере разложения в ряд Фурье частотной функции единичного скачка G(w), которая является Фурье-образом какой-то дискретной временной функции bn. Уравнение функции единичного скачка:

G(w) = -0.5 при -p £ w < 0, (3.1.3)

= 0.5 при 0 £ w £ p.

Функция (3.1.3) имеет разрыв величиной 1 в точке w = 0 и, в силу дискретности временной функции и периодичности ее спектра, в точках p, 2p и т.д. Поскольку функция G(w) является нечетной, ее ряд Фурье не содержит косинусных членов и коэффициенты ряда определяются выражением:

bn = G(w) sin(nw) dw = sin(nw) dw.

bn = 2/(n·p), n- нечетное,

bn = 0, n- четное.

Рис. 3.1.1. Значения коэффициентов bn.

Как видно на рис. 3.1.1, ряд коэффициентов bn затухает очень медленно. Соответственно, медленно будет затухать и ряд Фурье функции G(w):

G(w) = (2/p)[sin w+ (1/3)·sin 3w+ (1/5)·sin 5w+....].

G(w) = sin[(2n+1)w]/(2n+1). (3.1.4)

Рис. 3.1.2. Явление Гиббса.

Если мы будем ограничивать количество коэффициентов bn, т.е. ограничивать значение N ряда Фурье функции G(w), то суммирование в (3.1.4) будет осуществляться не до ∞, а до значения N. Графики частичных сумм ряда (3.1.4) в сопоставлении с исходной функцией приведены на рис. 3.1.2. Они наглядно показывают сущность явления Гиббса.

При усечении рядов Фурье определенное искажение функции, разложенной в ряд Фурье, существует всегда. Но при малой доле энергии отсекаемой части сигнала этот эффект может быть и мало заметен. На скачках и разрывах функций он проявляется наиболее ярко.

Параметры эффекта. Ряд (3.1.4) при усечении можно записать в следующем виде:

GN(w) = [ cos(2n+1)w dw] = [ cos(2n+1)w] dw.

Сумма косинусного ряда равна sin[2(N+1)w]/(2sin w). Отсюда:

GN(w) = . (3.1.5)

Для определения местоположения максимумов и минимумов осцилляций функции (3.1.5) приравняем к нулю ее первую производную (подинтегральную функцию), при этом:

wk = ±kp/(2(N+1)), k = 1,2,...

Соответственно, амплитудные значения первых (максимальных) осцилляций функции приходится на точки wk=1 = ±p/(2(N+1)), вторых (противоположных по полярности) - на точки wk=2 = ±p/(N+1). Период пульсаций равен 2wk=1 = p/(N+1) = Dw, т.е. интервалу дискретизации спектра при равном количестве отсчетов оператора фильтра и его спектра. Функция пульсаций (при ее выделении) является нечетной относительно скачка. Соответственно, при скачке функции G(w) на произвольной частоте главного частотного диапазона значения wk являются значениями Dwk относительно частоты скачка. Амплитудные значения функции в точках w1 и w2 (при подстановках w1 и w2 верхним пределом в (3.1.5)) практически не зависят от количества членов ряда N и равны:

GN(w1) » 0.5+0.09, GN(w2) » 0.5-0.05.

Амплитуда последующих осцилляций постепенно затухает.

Таким образом, для усеченных рядов Фурье предельные значения максимальных выбросов по обе стороны от скачка и следующих за ними обратных выбросов при единичной амплитуде разрыва функции достигают соответственно 9% и 5% значения амплитуды скачка. Кроме того, сам скачок функции из собственно скачка преобразуется в переходную зону, длина которой между точками максимальных выбросов по обе стороны скачка равна p/(N+1), а по уровню исходных значений функции на скачке (в данном случае от -0.5 до 0.5) порядка (2/3)p/(N+1). Это явление типично для всех функций с разрывом.

Можно рассмотреть это явление и с других позиций. Как известно, произведение функций отображается в частотном представлении сверткой их фурье-образов. Отсюда:

hn = h(n)·ПN(n) ó H(w) * ПN(w) = HN(w). (3.1.6)

Рис. 3.1.3. Свертывающие весовые функции.

Правая часть выражения (3.1.6) и отражает математическую сущность явления Гиббса. Ограничение массива функции определенным количеством членов (умножением на П-окно, прямоугольную селектирующую функцию) отображается сверткой частотной характеристики функции с частотной характеристикой селектирующей функции (которую часто называют свертывающей функцией). Частотная характеристика прямоугольной функции хорошо известна, как функция отсчетов sinc(x)/x, x = w(2N+1)/2, и для П-импульса длиной 2N+1 приведена на рис. 3.1.3 (для ряда значений N). Чем больше N, тем уже центральный пик функции и, соответственно, будет меньше ширина переходной зоны, которая формируется на разрыве вместо скачка функции. Амплитуда самих осцилляций (по номеру от центрального пика) остается без изменений. Свертка этой частотной функции (Фурье-образа селектирующей функции) с частотной характеристикой усекаемых функций и порождает явление Гиббса на резких скачках частотных характеристик.

Последствия для практики. При расчетах фильтров и усечении размеров их операторов явление Гиббса является весьма нежелательным, т.к. приводит к искажению формы передаточных характеристик фильтров. В качестве примера рассмотрим явление Гиббса применительно к фильтру низких частот.

Попытаемся реализовать передаточную функцию фильтра следующего вида:

H(f) = 1, при -0.2 £ f £ 0.2,

= 0, при -0.2 > f > 0.2,

в главном частотном диапазоне от -0.5 до 0.5. Функция четная, коэффициенты ряда Фурье представлены только косинусными членами:

an = 4 cos(2pfn) df = 2 sin(0.4pn)/(pn).

Передаточная функция:

H(f) = 0.4 + 2 sin(0.4pn) cos(2pfn)/(pn). (3.1.7)

Результат усечения ряда Фурье (3.1.7) до N = 7 приведен на рис. 3.1.4.

Рис. 3.1.4. Передаточные функции ФНЧ

Как видно на рисунке, явление Гиббса существенно искажает передаточную функцию фильтра. Однако при реализации фильтров ограничение длины операторов фильтров является правилом их конструирования исходя из чисто практических соображений реализации.

Явление Гиббса имеет место при усечении любых числовых массивов. При обработке геофизических данных операция усечения числовых массивов, как одномерных, так и многомерных, относится к числу распространенных. Усекаются корреляционные функции, и соответственно свертываются с частотным образом весового окна вычисляемые спектры мощности. Вырезаются из профилей и площадей участки съемки с аномальными данными для их более детальной обработки и интерпретации, и т.п. Во всех этих случаях мы можем столкнуться как с явлением Гиббса, так и с другими последствиями свертки функций в частотной области, в частности с цикличностью свертки, с определенным сглаживанием спектров усекаемых данных, которое может быть и нежелательным (снижение разрешающей способности), и полезным (повышение устойчивости спектров). В самих усекаемых данных мы не видим этих явлений, т.к. они проявляется в изменении их частотного образа, но при обработке данных, основной целью которой, как правило, и является изменение частотных соотношений в сигналах, последствия этих явлений могут сказаться самым неожиданным образом.

На рис. 3.1.5 показан другой пример искажений сигнала при усечении. Исходный аналоговый сигнал был вырезан из массива данных на интервале k = {0..60}, дискретизирован и переведен в цифровой форме в спектральную область для обработки. Дискретизация сигнала вызвала периодизацию его спектра, а дискретизация спектра вызвала периодизацию его динамического представления. Но на точках k=0 и k=60 в периодическом повторении исходного сигнала при усечении образовался скачок функции с бесконечным частотным спектром, а главный диапазон спектра дискретизированного сигнала ограничен интервалом его дискретизации (wN=1/2Dt). Следовательно, спектр сигнала является искаженным за счет наложения спектров боковых периодов, а при восстановлении аналогового сигнала по спектру главного диапазона он восстанавливается из усеченного спектра. Это приводит к появлению на скачке функции периодического повторения динамического представления сигнала явления Гиббса на обоих его концах, что и можно видеть на рис. 3.1.5 (сплошная тонкая кривая).

Рис. 3.1.5.

Практически это означает, что при частотной обработке вырезанного сигнала будет обрабатываться не спектр исходного сигнала, а спектр, которому соответствует сигнал, восстанавливаемый по данному спектру с наложенным явлением Гиббса.



Дата добавления: 2020-02-05; просмотров: 511;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.011 сек.