Развитие прототипа до промышленной ЭС
При неудовлетворительном функционировании прототипа эксперт и инженер по знаниям имеют возможность оценить, что именно будет включено в разработку окончательного варианта системы.
Если первоначально выбранные объекты или свойства оказываются неподходящими, их необходимо изменить. Можно сделать оценку общего числа эвристических правил, необходимых для создания окончательного варианта экспертной системы. Иногда [Хювянен, Сеппянен, 1991] при разработке промышленной и/или коммерческой системы выделяют следующие дополнительные этапы для перехода (табл. 1.2):
Ø демонстрационный прототип;
Ø исследовательский прототип;
Ø действующий прототип;
Ø промышленная система;
Ø коммерческая система.
Однако чаще реализуется плавный переход от демонстрационного прототипа к промышленной системе, при этом, если программный инструментарий был выбран удачно, не обязательно даже переписывать окончательный вариант другими программными средствами.
Понятие же коммерческой системы в нашей стране входит в понятие "промышленный программный продукт", или "промышленная ЭС" (в этой работе).
Таблица 1.2. Переход от прототипа к промышленной экспертной системе
Этапы развития прототипа | Функциональность прототипа |
Демонстрационный прототип ЭС | Система решает часть задач, демонстрируя жизнеспособность подхода (несколько десятков правил или понятий) |
Исследовательский прототип ЭС | Система решает большинство задач, но неустойчива в работе и не полностью проверена (несколько сотен правил или понятий) |
Действующий прототип ЭС | Система надежно решает все задачи на реальных примерах, но для сложной задачи требует много времени и памяти |
Промышленная система | Система обеспечивает высокое качество решений при минимизации требуемого времени и памяти; переписывается с использованием более эффективных средств представления знаний |
Коммерческая система | Промышленная система, пригодная к продаже, хорошо документирована и снабжена сервисом |
Основная работа на данном этапе заключается в существенном расширении базы знаний, т. е. в добавлении большого числа дополнительных правил, фреймов, узлов семантической сети или других элементов знаний. Эти элементы знаний обычно увеличивают глубину системы, обеспечивая большее число правил для трудноуловимых аспектов отдельных случаев. В то же время эксперт и инженер по знаниям могут увеличить базу знаний системы, включая правила, управляющие дополнительными подзадачами или дополнительными аспектами экспертной задачи (метазнания).
После установления основной структуры ЭС знаний инженер по знаниям приступает к разработке и адаптации интерфейсов, с помощью которых система будет общаться с пользователем и экспертом. Необходимо обратить особое внимание на языковые возможности интерфейсов, их простоту и удобство для управления работой ЭС. Система должна обеспечивать пользователю возможность легким и естественным образом уточнять непонятные моменты, приостанавливать работу и т. д. В частности, могут оказаться полезными графические представления.
На этом этапе разработки большинство экспертов узнают достаточно о вводе правил и могут сами вводить в систему новые правила. Таким образом, начинается процесс, во время которого инженер по знаниям передает право собственности и контроля системы эксперту для уточнения, детальной разработки и обслуживания.
Оценка системы
После завершения этапа разработки промышленной экспертной системы необходимо провести ее тестирование в отношении критериев эффективности. К тестированию широко привлекаются другие эксперты с целью апробирования работоспособности системы на различных примерах. Экспертные системы оцениваются главным образом для того, чтобы проверить точность работы программы и ее полезность. Оценку можно проводить, исходя из различных критериев, которые сгруппируем следующим образом:
Ø критерии пользователей (понятность и "прозрачность" работы системы, удобство интерфейсов и др.);
Ø критерии приглашенных экспертов (оценка советов-решений, предлагаемых системой, сравнение ее с собственными решениями, оценка подсистемы объяснений и др.);
Ø критерии коллектива разработчиков (эффективность реализации, производительность, время отклика, дизайн, широта охвата предметной области, непротиворечивость БЗ, количество тупиковых ситуаций, когда система не может принять решение, анализ чувствительности программы к незначительным изменениям в представлении знаний, весовых коэффициентах, применяемых в механизмах логического вывода, данных и т. п.).
Стыковка системы
На этом этапе осуществляется стыковка экспертной системы с другими программными средствами в среде, в которой она будет работать, и обучение людей, которых она будет обслуживать. Иногда это означает внесение существенных изменений. Такие изменения требуют непременного вмешательства инженера по знаниям или какого-либо другого специалиста, который сможет модифицировать систему. Под стыковкой подразумевается также разработка связей между экспертной системой и средой, в которой она действует.
Когда экспертная система уже готова, инженер по знаниям должен убедиться в том, что эксперты, пользователи и персонал знают, как эксплуатировать и обслуживать ее. После передачи им своего опыта в области информационной технологии инженер по знаниям может полностью предоставить ее в распоряжение пользователей.
Для подтверждения полезности системы важно предоставить каждому из пользователей возможность поставить перед ЭС реальные задачи, а затем проследить, как она выполняет эти задачи. Для того чтобы система была одобрена, необходимо представить ее как помощника, освобождающего пользователей от обременительных задач, а не как средство их замещения.
Стыковка включает обеспечение связи ЭС с существующими базами данных и другими системами на предприятии, а также улучшение системных факторов, зависящих от времени, чтобы можно было обеспечить ее более эффективную работу и улучшить характеристики ее технических средств, если система работает в необычной среде (например, связь с измерительными устройствами).
Так успешно была состыкована со своим окружением система PUFF — экспертная система для диагностики заболеваний легких [Хейес-Рот и др., 1987]. После того как PUFF была закончена и все были удовлетворены ее работой, систему перекодировали с LISP на Бейсик. Затем систему перенесли на ПЭВМ, которая уже работала в больнице. В свою очередь, эта ПЭВМ была связана с измерительными приборами. Данные с измерительных приборов сразу поступают в ПЭВМ. PUFF обрабатывает эти данные и печатает рекомендации для врача. Врач в принципе не взаимодействует с PUFF. Система полностью интегрирована со своим окружением — она представляет собой интеллектуальное расширение аппарата исследования легких, который врачи давно используют.
Другой системой, которая хорошо функционирует в своем окружении, являлась САТ-1 [Уотермен, 1990] — экспертная система для диагностики неисправностей дизелей локомотивов.
Эта система была разработана также на языке LISP, а затем была переведена на FORTH с тем, чтобы ее можно было более эффективно использовать в различных локомотивных цехах. Мастер по ремонту запрашивает систему о возможных причинах неисправности дизеля. Система связана с видеодиском, с помощью которого мастеру показывают визуальные объяснения и подсказки, касающиеся более подробных проверок, которые он должен сделать.
Кроме того, если оператор не уверен в том, как устранить неисправность, система предоставляет ему обучающие материалы, которые фирма подготовила предварительно, и показывает ему их на видеотерминале. Таким образом, мастер по ремонту может с помощью экспертной системы диагностировать проблему, найти тестовую процедуру, которую он должен использовать, получить на дисплее объяснение, как провести тест, или получить инструкции о том, как справиться с возникшей проблемой.
Поддержка системы
При перекодировании системы на язык, подобный Си, повышается ее быстродействие и увеличивается переносимость, однако гибкость при этом уменьшается. Это приемлемо лишь в том случае, если система сохраняет все знания проблемной области, и это знание не будет изменяться в ближайшем будущем. Однако если экспертная система создана именно из-за того, что проблемная область изменяется, то необходимо поддерживать систему в ее инструментальной среде разработки.
Удачным и ставшим уже хрестоматийным примером ЭС, внедренной таким образом, является XCON (R1) — ЭС, которую фирма DEC использовала для комплектации ЭВМ семейства VAX. Одной из ключевых проблем, с которой столкнулась фирма DEC, являлась необходимость постоянного внесения изменений для новых версий оборудования, новых спецификаций и т. д. Для этой цели XCON поддерживается в программной среде OPS5.
Дата добавления: 2021-12-14; просмотров: 294;