Назначения критерия
Критерий χ2 применяется в двух целях;
1) для сопоставления эмпирического распределения признака с теоретическим - равномерным, нормальным или каким-то иным;
2) для сопоставления двух, трех или более эмпирических распределений одного и того же признака[11].
Описание критерия
Критерий χ2отвечает на вопрос о том, с одинаковой ли частотой встречаются разные значения признака в эмпирическом и теоретическом распределениях или в двух и более эмпирических распределениях.
Преимущество метода состоит в том, что он позволяет сопоставлять распределения признаков, представленных в любой шкале, начиная от шкалы наименований (см. п. 1.2). В самом простом случае альтернативного распределения "да - нет", "допустил брак - не допустил брака", "решил задачу - не решил задачу" и т. п. мы уже можем применить критерий χ2.
Допустим, некий наблюдатель фиксирует количество пешеходов, выбравших правую или левую из двух симметричных дорожек на пути из точки А в точку Б (см. Рис. 4.3).
Допустим, в результате 70 наблюдений установлено, что Э\ человек выбрали правую дорожку, и лишь 19 - левую. С помощью критерия χ2мы можем определить, отличается ли данное распределение выборов от равномерного распределения, при котором обе дорожки выбирались бы с одинаковой частотой. Это вариант сопоставления полученного эмпирического распределения с теоретическим. Такая задача может стоять, например, в прикладных психологических исследованиях, связанных с проектированием в архитектуре, системах сообщения и др.
Но представим себе, что наблюдатель решает совершенно другую задачу: он занят проблемами билатерального регулирования. Совпадение полученного распределения с равномерным его интересует гораздо в меньшей степени, чем совпадение или несовпадение его данных с данными других исследователей. Ему известно, что люди с преобладанием правой ноги склонны делать круг против часовой стрелки, а люди с преобладанием левой ноги - круг по ходу часовой стрелки, и что в исследовании коллег[12] преобладание левой ноги было обнаружено у 26 человек из 100 обследованных.
С помощью метода χ2 он может сопоставить два эмпирических распределения: соотношение 51:19 в собственной выборке и соотношение 74:26 в выборке других исследователей.
Это вариант сопоставления двух эмпирических распределений по простейшему альтернативному признаку (конечно, простейшему с математической точки зрения, а отнюдь не психологической).
Аналогичным образом мы можем сопоставлять распределения выборов из трех и более альтернатив. Например, если в выборке из 50 человек 30 выбрали ответ (а), 15 человек - ответ (б) и 5 человек -ответ (в), то мы можем с помощью метода χ2 проверить, отличается ли это распределение от равномерного распределения или от распределения ответов в другой выборке, где ответ (а) выбрали 10 человек, ответ (б) -25 человек, ответ (в) - 15 человек.
В тех случаях, если признак измеряется количественно, скажем, вбаллах, секундах или миллиметрах, нам, быть может, придется объединить все обилие значений признака в несколько разрядов. Например, если время решения задачи варьирует от 10 до 300 секунд, то мы можем ввести 10 или 5 разрядов, в зависимости от объема выборки. Например, это будут разряды: 0-50 секунд; 51-100 секунд; 101-150 секунд, и т. д. Затем мы с помощью метода χ2будет сопоставлять частоты встречаемости разных разрядов признака, но в остальном принципиальная схема не меняется.
При сопоставлении эмпирического распределения с теоретическим мы определяем степень расхождения между эмпирическими и теоретическими частотами.
При сопоставлении двух эмпирических распределений мы определяем степень расхождения между эмпирическими частотами и теоретическими частотами, которые наблюдались бы в случае совпадения двух этих эмпирических распределений. Формулы расчета теоретических частот будут специально даны для каждого варианта сопоставлений.
Чем больше расхождение между двумя сопоставляемыми распределениями, тем больше эмпирическое значение у}.
Гипотезы
Возможны несколько вариантов гипотез, в зависимости от задач,
которые мы перед собой ставим.
Первый вариант:
Н0: Полученное эмпирическое распределение признака не отличается от теоретического (например, равномерного) распределения.
Н1: Полученное эмпирическое распределение признака отличается от теоретического распределения.
Второй вариант:
Н0: Эмпирическое распределение 1 не отличается от эмпирического распределения 2.
Н1: Эмпирическое распределение 1 отличается от эмпирического распределения 2.
Третий вариант:
Н0: Эмпирические распределения 1, 2, 3, ... не различаются между собой.
Н1: Эмпирические распределения 1, 2, 3, ... различаются между собой.
Критерий χ2 позволяет проверить все три варианта гипотез.
Дата добавления: 2016-06-05; просмотров: 1618;