Кривые второго порядка


Кривыми второго порядка называются линии, уравнения которых могут быть записаны в виде:

где - действительный числа, причем хотя бы один из коэффициентов не равен нулю. Кривые второго порядка – это окружность, эллипс, гипербола, парабола.

1. Окружность– множество точек плоскости, равноудаленных от данной точки - центра.

Символически: , где - центр, - радиус

Уравнение:

Пример: Написать уравнение окружности радиуса с центром в точке

2. Эллипс – множество точек плоскости, сумма расстояний для любых из которых до двух заданных точек (фокусов) есть величина постоянная.

Символически: , где , - заданные "фокусы".

Уравнение: Примем координаты фокусов . Тогда для произвольной точки эллипса

(1)

 

 

(2)

Так как . Обозначим Подставляя в равенство (??0), получим

– каноническое уравнение эллипса.

Эксцентриситет эллипса: - характеризует степень сжатия эллипса. Действительно:

Чем больше e, тем меньше т.е. эллипс "вытягивается" вдоль оси . При - приходим к уравнению окружности.

Пример. Найти параметры a, b, c и эксцентриситет эллипса, заданного уравнением: . Приведем уравнение к каноническому виду, деля обе части на 576

откуда:

3. Гипербола - множество точек плоскости, разность расстояний для любой из которых до двух заданных точек (фокусов) есть величина постоянная.

Символически: , где , - заданные "фокусы".

Уравнение: Принимая координаты фокусов и проведя преобразования, аналогичные выводу уравнения эллипса, придем к каноническому уравнению гиперболы:

 

Асимптоты гиперболы: , эксцентриситет:

Если основной прямоугольник "вытягивается" вдоль оси . В случае , т.е. - гипербола "равнобочная".

Пример. Найти полуоси фокальное расстояние , асимптоты и эксцентриситет гиперболы .

Деля обе части на 36, получим

Откуда, . Асимптоты

4. Парабола – множество точек плоскости, равноудаленных от данной точки - "фокуса" и данной прямой - "директрисы" Символически: , где -"директриса", - заданный "фокус".

Уравнение: Примем уравнение директрисы ; координаты фокуса . Тогда уравнение параболы:

После преобразования получим: -каноническое уравнение параболы (p– параметр параболы)

Замечание. Если директрису расположить параллельно оси OX, а фокус - на оси OY, то можно получить каноническое уравнение параболы в виде

Пример. Составить каноническое уравнение параболы, проходящей через точку a) Если принять уравнение параболы ,

б) Можно принять уравнение параболы



Дата добавления: 2016-06-05; просмотров: 1862;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.013 сек.