Давление электромагнитных волн.


 

Вопрос 1. Экспериментальное получение электромагнитных волн.

Существование электромагнитных волн было предсказано английским физиком М. Фарадеем в 1832 году. Из уравнений Максвелла, сформулированных им в 1865 году, вытекает, что переменные электромагнитные поля распространяются в пространстве со скоростью света. Решающее значение для подтверждения максвелловской теории сыграли опыты немецкого физика Г. Герца (1888г.), в которых было показано, что электрические и магнитные поля действительно распространяются в виде волн, свойства которых описываются уравнениями Максвелла. Уравнения Максвелла позволили установить, что электромагнитные радиоволны, оптическое, рентгеновское и гамма-излучения представляют собой электромагнитные волны с различной длиной волны.

Если где-то в пространстве существуют изменяющиеся со временем электрические заряды и токи, то они будут излучать электромагнитные волны, распространяющиеся в окружающей среде. Источником электромагнитных волн, например, может служить любой электрический колебательный контур или проводник, по которому течет переменный электрический ток, так как для возбуждения электромагнитных волн необходимо создать в пространстве переменные электрическое и магнитное поля.

В рассмотренной ранее лекции в колебательном LC - контуре электрическое и магнитное поля сосредоточены между обкладками конденсатора и внутри катушки индуктивности. Такой контур слабо излучает энергию в окружающее пространство и является в этом смысле закрытым колебательным контуром. Излучающая способность такого контура мала и он непригоден для получения электромагнитных волн. В 1886 году Г. Герц использовал для получения электромагнитных волн открытый колебательный контур, в котором он уменьшил число витков катушки и площадь пластин конденсатора, а также раздвинул их и таким образом совершил переход от закрытого колебательного контура к открытому колебательному контуру (вибратор Герца), представляющему собой два стержня, разделенных искровым промежутком. При подаче на вибратор высокого напряжения в промежутке между стержнями проскакивала искра. Она закорачивала промежуток, и в вибраторе возникали затухающие электрические колебания. За время горения искры успевало совершаться большое число колебаний. Если в закрытом колебательном контуре переменное электрическое поле E(t) сосредоточено внутри конденсатора C,а магнитное поле – внутри катушки индуктивности L (рис.4.1а), то в открытом оно заполняет окружающее пространство (рис.4.1в), вследствие чего существенно повышается интенсивность электромагнитного излучения.

 

 


Рис.4.1.

 

Излучаемые электромагнитные волны, распространяясь в пространстве, переносят энергию, поэтому запасенная в вибраторе энергия с течением времени уменьшается. Пополняется энергия вибратора за счет источника э.д.с., подключаемого к обкладкам конденсатора, а искровой промежуток применяется для того, чтобы увеличить разность потенциалов, до которой первоначально заряжаются обкладки. Помимо электрического поля, в пространстве вокруг вибратора создается вихревое магнитное поле, причем как показали исследования, в каждой точке пространства векторы и взаимно перпендикулярны, а их значения зависят от координат и времени. Для регистрации электромагнитных волн Г. Герц использовал второй подобный вибратор, называемый резонатором, имеющий такую же частоту собственных колебаний, что и излучающий вибратор, т.е. настроенный в резонанс с вибратором. Когда электромагнитные волны достигали резонатора, то в его зазоре проскакивала электрическая искра.

Г. Герц, используя описанный вибратор, получил электромагнитные волны длиной от 0,6 м до 10 м. С помощью больших металлических зеркал и асфальтовой призмы (размером более 1 м и массой 1200 кг) Герц осуществил отражение и преломление электромагнитных волн.Он обнаружил, что оба эти явления подчиняются законам, установленным ранее в оптике для световых волн. Отразив бегущую плоскую электромагнитную волну с помощью металлического зеркала в обратном направлении, Герц получил стоячую волну и, измерив расстояние между узлами и пучностями, определил длину волны λ. Умножив λ на частоту колебаний вибратора ν, он определил скорость распространения электромагнитных волн, которая оказалась близкой к скорости света. Используя решетку из параллельных друг другу медных проволок, расположенных на пути распространения электромагнитных волн, Г. Герц доказал поперечность электромагнитных волн.

Опыты Г. Герца были продолжены русским ученым П.Н. Лебедевым, который в 1894 году применил миниатюрный вибратор из тонких платиновых стерженьков и получил более короткие электромагнитные волны с λ = (4 – 6) мм и исследовал прохождение их в кристаллах. При этом было обнаружено двойное преломление волн (двойное лучепреломление).

В 1896 году русский ученый А.С. Попов впервые осуществил с помощью электромагнитных волн передачу сообщения на расстояние около 250 м (были переданы слова «Генрих Герц»). Тем самым было положено основание радиотехнике.

Недостатком вибраторов Герца и Лебедева являлось то, что свободные колебания в них быстро затухали и обладали малой мощностью. Для получения незатухающих колебаний необходимо создать автоколебательную систему, которая обеспечивала бы подачу энергии с частотой, равной частоте собственных колебаний контура. Для этого в настоящее время используют транзисторные генераторы.

Простейшим излучателем электромагнитной волны является электрический диполь, представляющий собой отрезок проводника длиной l << λ, по которому протекает электрический ток I = I0sinωt. На расстояниях r>>λ от электрического диполя, в так называемой волновой зоне, электромагнитные поля «отпочковавшиеся» от диполя никак с ним не связаны и свободно распространяются в пространстве. В однородной изотропной среде они образуют сферическую волну.

Помимо радиотехники и связи электромагнитные волны широко используются в радиолокации для обнаружения и определения положения самолетов, ракет, кораблей, наблюдения за образованием и движением облаков, изучения движения планет и метеоритов и т.д. Электромагнитные волны используются в радиогеодезии для точного определения расстояний между объектами и положения объекта на местности (система ГЛОНАСС). В радиоастрономии электромагнитные волны используются для исследования радиоизлучения небесных объектов. Практически нет таких областей науки и техники, где бы не использовались электромагнитные волны.

 



Дата добавления: 2017-10-04; просмотров: 1395;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.