Сложение упакованных BCD-чисел
Вначале разберемся с сутью проблемы и попытаемся сложить два двузначных упакованных BCD-числа. Пример Сложение упакованных BCD-чисел:
67 = 01100111
+
75 = 01110101
=
142 = 1101 1100 = 220
Как видим, в двоичном виде результат равен 1101 1100 (или 220 в десятичном представлении), что неверно. Это происходит по той причине, что микропроцессор не подозревает о существовании BCD-чисел и складывает их по правилам сложения двоичных чисел. На самом деле, результат в двоично-десятичном виде должен быть равен 0001 0100 0010 (или 142 в десятичном представлении).
Видно, что, как и для неупакованных BCD-чисел, для упакованных BCD-чисел существует потребность как-то корректировать результаты арифметических операций.
Микропроцессор предоставляет для этого команду daa – daa (Decimal Adjust for Addition) – коррекция результата сложения для представления в десятичном виде.
Команда daa преобразует содержимое регистра al в две упакованные десятичные цифры по алгоритму, приведенному в описании команды daa Получившаяся в результате сложения единица (если результат сложения больше 99) запоминается в флаге cf, тем самым учитывается перенос в старший разряд.
Вычитание упакованных BCD-чисел
Аналогично сложению, микропроцессор рассматривает упакованные BCD-числа как двоичные и, соответственно, выполняет вычитание BCD-чисел как двоичных.
Пример
Вычитание упакованных BCD-чисел.
Выполним вычитание 67–75. Так как микропроцессор выполняет вычитание способом сложения, то и мы последуем этому:
67 = 01100111
+
-75 = 10110101
=
-8 = 0001 1100 = 28
Как видим, результат равен 28 в десятичной системе счисления, что является абсурдом. В двоично-десятичном коде результат должен быть равен 0000 1000 (или 8 в десятичной системе счисления).
При программировании вычитания упакованных BCD-чисел программист, как и при вычитании неупакованных BCD-чисел, должен сам осуществлять контроль за знаком. Это делается с помощью флага CF, который фиксирует заем из старших разрядов.
Само вычитание BCD-чисел осуществляется простой командой вычитания sub или sbb. Коррекция результата осуществляется командой das – das (Decimal Adjust for Substraction) – коррекция результата вычитания для представления в десятичном виде.
Команда das преобразует содержимое регистра AL в две упакованные десятичные цифры по алгоритму, приведенному в описании команды das.
ГЛАВА № 6. Команды передачи управления
Логические команды
Наряду со средствами арифметических вычислений, система команд микропроцессора имеет также средства логического преобразования данных. Под логическими понимаются такие преобразования данных, в основе которых лежат правила формальной логики.
Формальная логика работает на уровне утверждений истинно и ложно. Для микропроцессора это, как правило, означает 1 и 0 соответственно. Для компьютера язык нулей и единиц является родным, но минимальной единицей данных, с которой работают машинные команды, является байт. Однако на системном уровне часто необходимо иметь возможность работать на предельно низком уровне – на уровне бит.
Рис. 29. Средства логической обработки данных
К средствам логического преобразования данных относятся логические команды и логические операции. Операнд команды ассемблера в общем случае может представлять собой выражение, которое, в свою очередь, является комбинаций операторов и операндов. Среди этих операторов могут быть и операторы, реализующие логические операции над объектами выражения.
Перед подробным рассмотрением этих средств рассмотрим, что же представляют собой сами логические данные и какие операции над ними производятся.
Логические данные
Теоретической базой для логической обработки данных является формальная логика. Существует несколько систем логики. Одна из наиболее известных – это исчисление высказываний. Высказывание – это любое утверждение, о котором можно сказать, что оно либо истинно, либо ложно.
Исчисление высказываний представляет собой совокупность правил, используемых для определения истинности или ложности некоторой комбинации высказываний.
Исчисление высказываний очень гармонично сочетается с принципами работы компьютера и основными методами его программирования. Все аппаратные компоненты компьютера построены на логических микросхемах. Система представления информации в компьютере на самом нижнем уровне основана на понятии бита. Бит, имея всего два состояния (0 (ложно) и 1 (истинно)), естественным образом вписывается в исчисление высказываний.
Согласно теории, над высказываниями (над битами) могут выполняться следующие логические операции.
1. Отрицание (логическое НЕ) – логическая операция над одним операндом, результатом которой является величина, обратная значению исходного операнда.
Эта операция однозначно характеризуется следующей таблицей истинности (табл. 12).
Таблица 12. Таблица истинности для логического отрицания
2. Логическое сложение (логическое включающее ИЛИ) – логическая операция над двумя операндами, результатом которой является «истина» (1), если один или оба операнда имеют значение «истина» (1), и «ложь» (0), если оба операнда имеют значение «ложь» (0).
Эта операция описывается с помощью следующей таблицы истинности (табл. 13).
Таблица 13. Таблица истинности для логического включающего ИЛИ
3. Логическое умножение (логическое И) – логическая операция над двумя операндами, результатом которой является «истина» (1) только в том случае, если оба операнда имеют значение «истина» (1). Во всех остальных случаях значение операции «ложь» (0).
Эта операция описывается с помощью следующей таблицы истинности (табл. 14).
Таблица 14. Таблица истинности для логического И
4. Логическое исключающее сложение (логическое исключающее ИЛИ) – логическая операция над двумя операндами, результатом которой является «истина» (1), если только один из двух операндов имеет значение «истина» (1), и ложь (0), если оба операнда имеют значение «ложь» (0) или «истина» (1). Эта операция описывается с помощью следующей таблицы истинности (таб. 15).
Таблица 15. Таблица истинности для логического исключающего ИЛИ
Система команд микропроцессора содержит пять команд, поддерживающих данные операции. Эти команды выполняют логические операции над битами операндов. Размерность операндов, естественно, должна быть одинакова. Например, если размерность операндов равна слову (16 бит), то логическая операция выполняется сначала над нулевыми битами операндов, и ее результат записывается на место бита 0 результата. Далее команда последовательно повторяет эти действия над всеми битами с первого до пятнадцатого.
Логические команды
В системе команд микропроцессора есть следующий набор команд, поддерживающих работу с логическими данными:
1) and операнд_1, операнд_2 – операция логического умножения. Команда выполняет поразрядно логическую операцию И (конъюнкцию) над битами операндов операнд_1 и операнд_2. Результат записывается на место операнд_1;
2) ог операнд_1, операнд_2 – операция логического сложения. Команда выполняет поразрядно логическую операцию ИЛИ (дизъюнкцию) над битами операндов операнд_1 и операнд_2. Результат записывается на место операнд_1;
3) хог операнд_1, операнд_2 – операция логического исключающего сложения. Команда выполняет поразрядно логическую операцию исключающего ИЛИ над битами операндов операнд_1 и операнд_2. Результат записывается на место операнде;
4) test операнд_1, операнд_2 – операция «проверить» (способом логического умножения). Команда выполняет поразрядно логическую операцию И над битами операндов операнд_1 и операнд_2. Состояние операндов остается прежним, изменяются только флаги zf, sf, и pf, что дает возможность анализировать состояние отдельных битов операнда без изменения их состояния;
5) not операнд – операция логического отрицания. Команда выполняет поразрядное инвертирование (замену значения на обратное) каждого бита операнда. Результат записывается на место операнда.
Для представления роли логических команд в системе команд микропроцессора очень важно понять области их применения и типовые приемы их использования при программировании.
С помощью логических команд возможно выделение отдельных битов в операнде с целью их установки, сброса, инвертирования или просто проверки на определенное значение.
Для организации подобной работы с битами операнд_2 обычно играет роль маски. С помощью установленных в 1 бите этой маски и определяются нужные для конкретной операции биты операнд_1. Покажем, какие логические команды могут применяться для этой цели:
1) для установки определенных разрядов (бит) в 1 применяется команда ог операнд_1, операнд_2.
В этой команде операнд_2, выполняющий роль маски, должен содержать единичные биты на месте тех разрядов, которые должны быть установлены в 1 в операнд_1;
2) для сброса определенных разрядов (бит) в 0 применяется команда and операнд_1, операнд_2.
В этой команде операнд_2, выполняющий роль маски, должен содержать нулевые биты на месте тех разрядов, которые должны быть установлены в 0 в операнд_1;
3) команда хог операнд_1, операнд_2 применяется:
а) для выяснения того, какие биты в операнд_1 и операнде различаются;
б) для инвертирования состояния заданных бит в операнд_1.
Интересующие нас биты маски (операнд_2) при выполнении команды хог должны быть единичными, остальные – нулевыми;
Для проверки состояния заданных бит применяется команда test операнд_1, операнд_2 (проверить операнд_1).
Проверяемые биты операнд_1 в маске (операнд_2) должны иметь единичное значение. Алгоритм работы команды test подобен алгоритму команды and, но он не меняет значения операнд_1. Результатом команды является установка значения флага нуля zf:
1) если zf = 0, то в результате логического умножения получился нулевой результат, т. е. один единичный бит маски, который не совпал с соответствующим единичным битом операнде;
2) если zf = 1, то в результате логического умножения получился ненулевой результат, т. е. хотя бы один единичный бит маски совпал с соответствующим единичным битом операнд_1.
Для реакции на результат команды test целесообразно использовать команду перехода jnz метка (Jump if Not Zero) – переход, если флаг нуля zf ненулевой, или команду с обратным действием – jz метка (Jump if Zero) – переход, если флаг нуля zf = 0.
Следующие две команды позволяют осуществить поиск первого установленного в 1 бита операнда. Поиск можно произвести как с начала, так и от конца операнда:
1) bsf операнд_1, операнд_2 (Bit Scaning Forward) – сканирование битов вперед. Команда просматривает (сканирует) биты операнд_2 от младшего к старшему (от бита 0 до старшего бита) в поисках первого бита, установленного в 1. Если таковой обнаруживается, в операнд_1 заносится номер этого бита в виде целочисленного значения. Если все биты операнд_2 равны 0, то флаг нуля zf устанавливается в 1, в противном случае флаг zf сбрасывается в 0;
2) bsr операнд_1, операнд_2 (Bit Scaning Reset) – сканирование битов в обратном порядке. Команда просматривает (сканирует) биты операнд_2 от старшего к младшему (от старшего бита к биту 0) в поисках первого бита, установленного в 1. Если таковой обнаруживается, в операнд_1 заносится номер этого бита в виде целочисленного значения. При этом важно, что позиция первого единичного бита слева отсчитывается все равно относительно бита 0. Если все биты операнд_2 равны 0, то флаг нуля zf устанавливается в 1, в противном случае флаг zf сбрасывается в 0.
В последних моделях микропроцессоров Intel в группе логических команд появилось еще несколько команд, которые позволяют осуществить доступ к одному конкретному биту операнда. Операнд может находиться как в памяти, так и в регистре общего назначения. Положение бита задается смещением бита относительно младшего бита операнда. Значение смещения может задаваться как в виде непосредственного значения, так и содержаться в регистре общего назначения. В качестве значения смещения вы можете использовать результаты работы команд bsr и bsf. Все команды присваивают значение выбранного бита флагу СЕ
1) bt операнд, смещение_бита (Bit Test) – проверка бита. Команда переносит значение бита в флаг cf;
2) bts операнд, смещение_бита (Bit Test and Set) – проверка и установка бита. Команда переносит значение бита в флаг CF и затем устанавливает проверяемый бит в 1;
3) btr операвд, смещение_бита (Bit Test and Reset) – проверка и сброс бита. Команда переносит значение бита в флаг CF и затем устанавливает этот бит в 0;
4) btc операнд, смещение_бита (Bit Test and Convert) – проверка и инвертирование бита. Команда переносит значение бита в флаг cf и затем инвертирует значение этого бита.
Команды сдвига
Команды этой группы также обеспечивают манипуляции над отдельными битами операндов, но иным способом, чем логические команды, рассмотренные выше.
Все команды сдвига перемещают биты в поле операнда влево или вправо в зависимости от кода операции. Все команды сдвига имеют одинаковую структуру – коп операнд, счетчик_сдвигов.
Количество сдвигаемых разрядов – счетчик_сдвигов – располагается на месте второго операнда и может задаваться двумя способами:
1) статически, что предполагает задание фиксированного значения с помощью непосредственного операнда;
2) динамически, что означает занесение значения счетчика сдвигов в регистр cl перед выполнением команды сдвига.
Исходя из размерности регистра cl понятно, что значение счетчика сдвигов может лежать в диапазоне от 0 до 255. Но на самом деле это не совсем так. В целях оптимизации микропроцессор воспринимает только значение пяти младших битов счетчика, т. е. значение лежит в диапазоне от 0 до 31.
Все команды сдвига устанавливают флаг переноса cf.
По мере сдвига битов за пределы операнда они сначала попадают на флаг переноса, устанавливая его равным значению очередного бита, оказавшегося за пределами операнда. Куда этот бит попадет дальше, зависит от типа команды сдвига и алгоритма программы.
По принципу действия команды сдвига можно разделить на два типа:
1) команды линейного сдвига;
2) команды циклического сдвига.
Дата добавления: 2021-09-25; просмотров: 615;