Кинетическая энергия


Кинетическая энергия точки и системы. Кинетической энергией материальной точки называют половину произведения массы точки на квадрат ее скорости, т.е. или , так как скалярный квадрат любого вектора равен квадрату модуля этого вектора. Кинетическая энергия является скалярной положительной величиной.

Кинетической энергией системы называют сумму кинетических энергий всех точек механической системы, т. е.

. (200)

Кинетическая энергия как точки, так и сие темы не зависит от направления скоростей точек. Кинетическая энергия может быть равна нулю для системы только при условии, если все точки системы находятся в покое.

Вычисление кинетической энергии системы (теорема Кёнига): Кинетическая энергия системы в абсолютном движении складывается из кинетической энергии центра масс, если в нем сосредоточить всю массу системы, и кинетической энергии системы относительно центра масс:

, (201)

где .

Величина – кинетическая энергия относительного движения системы относительно системы координат, движущейся поступательно вместе с ее центром масс, или кинетическая энергией системы относительно центра масс.

Кинетическая энергия твердого тела. При поступательном движении твердого тела

, (202)

так как при поступательном движении твердого тела скорости всех точек тела одинаковы, т. е. , где – общая скорость для всех точек тела.

Таким образом, кинетическая энергия твердого тела при поступательном движении вычисляется так же, как и для одной точки, у которой масса равна массе всего тела.

При вращении тела вокруг неподвижной оси

, (203)

где – момент инерции тела относительно оси вращения .

Следовательно, кинетическая энергия тела при вращательном движении вокруг неподвижной оси равна половине произведения момента инерции тела относительно оси вращения на квадрат угловой скорости тела.

При плоском движении твердого тела

. (204)

Таким образом, при плоском движении тела кинетическая энергия складывается из кинетической энергии поступательного движения тела вместе с центром масс и кинетической энергии от вращения вокруг оси, проходящей через центр масс и перпендикулярной плоскости движения.



Дата добавления: 2017-09-01; просмотров: 997;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.