Ускорения точек плоской фигуры


Рассматривая плоское движение плоской фигуры как сложное, состоящее из переносного поступательного вместе с полюсом и относительного вращательного вокруг , по теореме о сложении ускорений для точки имеем

. (92)

Так как переносное движение является поступательным вместе с точкой фигуры, то переносное ускорение

Относительное ускорение точки от вращения вокруг полюса обозначим . После этого формула (92) принимает вид

. (93)

т. е. ускорение какой-либо точки плоской фигуры при плоском движении равно векторной сумме ускорения полюса и ускорения этой точки от вращательного движения плоской фигуры вокруг полюса.

Ускорение от относительного вращательного движения вокруг полюса, как и в случае вращения тела вокруг неподвижной оси, состоит из касательной и нормальной составляющих и :

, (94)

причем

, (95)

, (96)

. (97)

Касательное относительное ускорение направлено по перпендикуляру к отрезку в сторону дуговой стрелки углового ускорения (рис. 38,а). Нормальное относительное ускорение соответственно направлено по линии от точки к полюсу . Наконец, полное относительное ускорение составляет с отрезком угол , тангенс которого можно определить по формуле

. (98)

 

а) б)

Рис. 38

 

Из формулы (98) следует, что угол для всех точек плоской фигуры одинаков. При угол от ускорения к отрезку надо откладывать против часовой стрелки. При его надо откладывать по часовой стрелке, т. е. во всех случаях, независимо от направления вращения фигуры, угол всегда надо откладывать в направлении дуговой стрелки углового ускорения. В соответствии с (93) и (94) можно построить в выбранном масштабе многоугольник ускорений для точки (рис. 38,б).

.



Дата добавления: 2017-09-01; просмотров: 978;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.