Тейлор (1685-1731) – английский математик


Доказательство.

 

( с учетом того, что если Dx®0, то Du®0, т.к. u = g(x) – непрерывная функция)

 

Тогда

Теорема доказана.

 

Логарифмическое дифференцирование.

 

Рассмотрим функцию .

Тогда (lnïxï)¢= , т.к. .

Учитывая полученный результат, можно записать .

Отношение называется логарифмической производной функции f(x).

Способ логарифмического дифференцированиясостоит в том, что сначала находят логарифмическую производную функции, а затем производную самой функции по формуле

 

 

Способ логарифмического дифференцирования удобно применять для нахождения производных сложных, особенно показательных функций, для которых непосредственное вычисление производной с использованием правил дифференцирования представляется трудоемким.

 

 

Производная показательно- степенной функции.

 

Функция называется показательной, если независимая переменная входит в показатель степени, и степенной, если переменная является основанием. Если же и основание и показатель степени зависят от переменной, то такая функция будет показательно – степенной.

Пусть u = f(x) и v = g(x) – функции, имеющие производные в точке х, f(x)>0.

Найдем производную функции y = uv. Логарифмируя, получим:

 

lny = vlnu

 

Пример. Найти производную функции .

 

По полученной выше формуле получаем:

Производные этих функций:

Окончательно:

 

 

Производная обратных функций.

Пусть требуется найти производную функции у = f(x) при условии, что обратная ей функция x = g(y) имеет производную, отличную от нуля в соответствующей точке.

Для решения этой задачи дифференцируем функцию x = g(y) по х:

 

т.к. g¢(y) ¹ 0

 

 

т.е. производная обратной функции обратна по величине производной данной функции.

 

 

Пример. Найти формулу для производной функции arctg.

 

Функция arctg является функцией, обратной функции tg, т.е. ее производная может быть найдена следующим образом:

 

Известно, что

По приведенной выше формуле получаем:

 

Т.к. то можно записать окончательную формулу для производной арктангенса:

Таким образом получены все формулы для производных арксинуса, арккосинуса и других обратных функций, приведенных в таблице производных.

 

Дифференциал функции.

Пусть функция y = f(x) имеет производную в точке х:

Тогда можно записать: , где a®0, при Dх®0.

Следовательно: .

Величина aDx- бесконечно малая более высокого порядка, чем f¢(x)Dx, т.е. f¢(x)Dx- главная часть приращения Dу.

 

Определение. Дифференциалом функции f(x) в точке х называется главня линейная часть приращения функции.

Обозначается dy или df(x).

Из определения следует, что dy = f¢(x)Dx или

dy = f¢(x)dx.

Можно также записать:

Геометрический смысл дифференциала.

y

f(x)

K

dy

M Dy

L

 

a

x x + Dx x

 

 

Из треугольника DMKL: KL = dy = tga×Dx = y¢×Dx

Таким образом, дифференциал функции f(x) в точке х равен приращению ординаты касательной к графику этой функции в рассматриваемой точке.

 

Свойства дифференциала.

 

Если u = f(x) и v = g(x)- функции, дифференцируемые в точке х, то непосредственно из определения дифференциала следуют следующие свойства:

 

1) d(u ± v) = (u ± v)¢dx = u¢dx ± v¢dx = du ± dv

 

2) d(uv) = (uv)¢dx = (u¢v + v¢u)dx = vdu + udv

3) d(Cu) = Cdu

 

4)

 

Дифференциал сложной функции.

Инвариантная форма записи дифференциала.

Пусть y = f(x), x = g(t), т.е у- сложная функция.

Тогда dy = f¢(x)g¢(t)dt = f¢(x)dx.

 

Видно, что форма записи дифференциала dy не зависит от того, будет ли х независимой переменной или функцией какой- то другой переменной, в связи с чем эта форма записи называется инвариантной формой записи дифференциала.

 

Однако, если х- независимая переменная, то

dx = Dx, но

если х зависит от t, то Dх ¹ dx.

Таким образом форма записи dy = f¢(x)Dx не является инвариантной.

 

Пример. Найти производную функции .

 

Сначала преобразуем данную функцию:

 

Пример. Найти производную функции .

 

 

Пример. Найти производную функции

 

Пример. Найти производную функции

 

 

Пример. Найти производную функции

 

 

 

Формула Тейлора.

Тейлор (1685-1731) – английский математик

 

Теорема Тейлора. 1) Пусть функция f(x) имеет в точке х = а и некоторой ее окрестности производные порядка до (n+1) включительно.{ Т.е. и все предыдущие до порядка n функции и их производные непрерывны и дифференцируемы в этой окрестности}.

2) Пусть х- любое значение из этой окрестности, но х ¹ а.

Тогда между точками х и а найдется такая точка e, что справедлива формула:

 

- это выражение называется формулой Тейлора, а выражение:

 

называется остаточным членом в форме Лагранжа.

 

Доказательство. Представим функцию f(x) в виде некоторого многочлена Pn(x), значение которого в точке х = а равно значению функции f(x), а значения его производных равно значениям соответствующих производных функции в точке х = а.

 

(1)

 

Многочлен Pn(x) будет близок к функции f(x). Чем больше значение n, тем ближе значения многочлена к значениям функции, тем точнее он повторяет функцию.

Представим этот многочлен с неопределенными пока коэффициентами:

 

(2)

Для нахождения неопределенных коэффициентов вычисляем производные многочлена в точке х = а и составляем систему уравнений:

 

(3)

 

Решение этой системы при х = а не вызывает затруднений, получаем:

…………………….

Подставляя полученные значения Ci в формулу (2), получаем:

 

 

Как было замечено выше, многочлен не точно совпадает с функцией f(x), т.е. отличается от нее на некоторую величину. Обозначим эту величину Rn+1(x). Тогда:

 

f(x) = Pn(x) + Rn+1(x)

 

Теорема доказана.

 

Рассмотрим подробнее величину Rn+1(x).

 

y Как видно на рисунке, в

точке х = а значение мно-

f(x) Rn+1(x) гочлена в точности совпа-

дает со значением функции.

Pn(x) Однако, при удалении от точ-

ки х = а расхождение значе- ний увеличивается.

0 a x x

 

Иногда используется другая запись для Rn+1(x). Т.к. точка eÎ(a, x), то найдется такое число q из интервала 0 < q < 1, что e = a + q(x – a).

Тогда можно записать:

Тогда, если принять a = x0, x – a = Dx, x = x0 + Dx, формулу Тейлора можно записать в виде:

 

где 0 < q < 1

 

Если принять n =0, получим: f(x0 + Dx) – f(x0) = f¢(x0 + qDx)×Dx – это выражение называется формулой Лагранжа. (Жозеф Луи Лагранж (1736-1813) французский математик и механик).

Формула Тейлора имеет огромное значение для различных математических преобразований. С ее помощью можно находить значения различных функций, интегрировать, решать дифференциальные уравнения и т.д.

При рассмотрении степенных рядов будет более подробно описаны некоторые особенности и условия разложения функции по формуле Тейлора.

 

Формула Маклорена.

 

Колин Маклорен (1698-1746) шотландский математик.

 

Формулой Маклоренаназывается формула Тейлора при а = 0:

 

Мы получили так называемую формулу Маклорена с остаточным членом в форме Лагранжа.

Следует отметить, что при разложении функции в ряд применение формулы Маклорена предпочтительнее, чем применение непосредственно формулы Тейлора, т.к. вычисление значений производных в нуле проще, чем в какой- либо другой точке, естественно, при условии, что эти производные существуют.

 

Однако, выбор числа а очень важен для практического использования. Дело в том, что при вычислении значения функции в точке, расположенной относительно близко к точке а, значение, полученное по формуле Тейлора, даже при ограничении тремя – четырьмя первыми слагаемыми, совпадает с точным значением функции практически абсолютно. При удалении же рассматриваемой точки от точки а для получения точного значения надо брать все большее количество слагаемых формулы Тейлора, что неудобно.

Т.е. чем больше по модулю значение разности (х – а) тем более точное значение функции отличается от найденного по формуле Тейлора.

Кроме того, можно показать, что остаточный член Rn+1(x) является бесконечно малой функцией при х®а, причем долее высокого порядка, чем (х – а)m, т.е.

 

.

Таким образом, ряд Маклорена можно считать частным случаем ряда Тейлора.

 

 

Представление некоторых элементарных функций

по формуле Тейлора.

Применение формулы Тейлора для разложения функций в степенной ряд широко используется и имеет огромное значение при проведении различных математических расчетов. Непосредственное вычисление интегралов некоторых функций может быть сопряжено со значительными трудностями, а замена функции степенным рядом позволяет значительно упростить задачу. Нахождение значений тригонометрических, обратных тригонометрических, логарифмических функций также может быть сведено к нахождению значений соответствующих многочленов.

Если при разложении в ряд взять достаточное количество слагаемых, то значение функции может быть найдено с любой наперед заданной точностью. Практически можно сказать, что для нахождения значения любой функции с разумной степенью точности (предполагается, что точность, превышающая 10 – 20 знаков после десятичной точки, необходима очень редко) достаточно 4-10 членов разложения в ряд.

Применение принципа разложения в ряд позволяет производить вычисления на ЭВМ в режиме реального времени, что немаловажно при решении конкретных технических задач.

 

 

Функция f(x) = ex.

 

Находим: f(x) = ex, f(0) = 1

f¢(x) = ex, f¢(0) = 1

……………………

f(n)(x) = ex, f(n)(0) = 1

Тогда:

 

 

Пример: Найдем значение числа е.

В полученной выше формуле положим х = 1.

 

Для 8 членов разложения: e = 2,71827876984127003

Для 10 членов разложения: e = 2,71828180114638451

Для 100 членов разложения: e = 2,71828182845904553

 

 

На графике показаны значения числа е с точностью в зависимости от числа членов разложения в ряд Тейлора.

Как видно, для достижения точности, достаточной для решения большинства практических задач, можно ограничиться 6-7 – ю членами ряда.

 

 

Функция f(x) = sinx.

Получаем f(x) = sinx; f(0) = 0

f¢(x) = cosx = sin( x + p/2); f¢(0) = 1;

f¢¢(x) = -sinx = sin(x + 2p/2); f¢¢(0) = 0;

f¢¢¢(x) = -cosx = sin(x + 3p/2); f¢¢¢(0)=-1;

…………………………………………

f(n)(x) = sin(x + pn/2); f(n)(0) = sin(pn/2);

f(n+1)(x) = sin(x + (n + 1)p/2); f(n+1)(e) = sin(e + (n + 1)p/2);

Итого:

 

Функция f(x) = cosx.

 

Для функции cosx, применив аналогичные преобразования, получим:

 

 

Функция f(x) = (1 + x)a.

(a - действительное число)

 

…………………………………………………..

 

Тогда:

 

Если в полученной формуле принять a = n, где n- натуральное число и f(n+1)(x)=0, то Rn+1 = 0, тогда

 

Получилась формула, известная как бином Ньютона.

 

Пример: Применить полученную формулу для нахождения синуса любого угла с любой степенью точности.

На приведенных ниже графиках представлено сравнение точного значения функции и значения разложения в ряд Тейлора при различном количестве членов разложения.

 

 

Рис. 1. Два члена разложения

 

 

 

Рис. 2. Четыре члена разложения

 

 

 

 

Рис. 3. Шесть членов разложения

 

 

 

Рис. 4. Десять членов разложения

Чтобы получить наиболее точное значение функции при наименьшем количестве членов разложения надо в формуле Тейлора в качестве параметра а выбрать такое число, которое достаточно близко к значению х, и значение функции от этого числа легко вычисляется.

 

Для примера вычислим значение sin200.

Предварительно переведем угол 200 в радианы: 200 = p/9.

Применим разложение в ряд Тейлора, ограничившись тремя первыми членами разложения:

В четырехзначных таблицах Брадиса для синуса этого угла указано значение 0,3420.

 

На графике показано изменение значений разложения в ряд Тейлора в зависимости от количества членов разложения. Как видно, если ограничиться тремя членами разложения, то достигается точность до 0,0002.

Выше говорилось, что при х®0 функция sinx является бесконечно малой и может при вычислении быть заменена на эквивалентную ей бесконечно малую функцию х. Теперь видно, что при х, близких к нулю, можно практически без потери в точности ограничиться первым членом разложения, т.е. sinx @ x.

 

Пример: Вычислить sin28013¢15¢¢.

 

Для того, чтобы представить заданный угол в радианах, воспользуемся соотношениями:

 

10 = ; 280 ;

; ;

; ;

 

рад

 

Если при разложении по формуле Тейлора ограничиться тремя первыми членами, получим: sinx = .

Сравнивая полученный результат с точным значением синуса этого угла,

 

sin = 0,472869017612759812,

видим, что даже при ограничении всего тремя членами разложения, точность составила 0,000002, что более чем достаточно для большинства практических технических задач.

 

 

Функция f(x) = ln(1 + x).

Получаем: f(x) = ln(1 + x); f(0) = 0;

f¢(x) = ;

………………………………………

 

Итого:

 

Полученная формула позволяет находить значения любых логарифмов (не только натуральных) с любой степенью точности. Ниже представлен пример вычисления натурального логарифма ln1,5. Сначала получено точное значение, затем – расчет по полученной выше формуле, ограничившись пятью членами разложения. Точность достигает 0,0003.

 

ln1,5 = 0,405465108108164381

 

 

Разложение различных функций по формулам Тейлора и Маклорена приводится в специальных таблицах, однако, формула Тейлора настолько удобна, что для подавляющего большинства функций разложение может быть легко найдено непосредственно.

Ниже будут рассмотрены различные применения формулы Тейлора не только к приближенным представлениям функций, но и к решению дифференциальных уравнений и к вычислению интегралов.

Применение дифференциала к приближенным вычислениям.

Дифференциал функции y = f(x) зависит от Dх и является главной частью приращения Dх.

Также можно воспользоваться формулой

 

Тогда абсолютная погрешность

Относительная погрешность

 

Более подробно применение дифференциала к приближенным вычислениям будет описано ниже.

 

При использовании компьютерной версии “Курса высшей математики” возможно запустить программу, которая производит разложение любой функции в ряды Тейлора и Маклорена, а также вычисляет значение функции в заданной точке, выводит погрешность вычислений.

 
 

Для запуска программы дважды щелкните на значке

Примечание: Для запуска программы необходимо чтобы на компьютере была установлена программа Maple (Ó Waterloo Maple Inc.) любой версии, начиная с MapleV Release 4.

 

Теоремы о среднем.

Теорема Ролля.

(Ролль (1652-1719)- французский математик)

 

Если функция f(x) непрерывна на отрезке [a, b], дифференцируема на интервале (а, b) и значения функции на концах отрезка равны f(a) = f(b), то на интервале (а, b) существует точка e, a < e < b, в которой производная функция f(x) равная нулю,

f¢(e) = 0.

Геометрический смысл теоремы Ролля состоит в том, что при выполнении условий теоремы на интервале (a, b) существует точка e такая, что в соответствующей точке кривой y = f(x) касательная параллельна оси Ох. Таких точек на интервале может быть и несколько, но теорема утверждает существование по крайней мере одной такой точки.

 

Доказательство. По свойству функций, непрерывных на отрезке функция f(x) на отрезке [a, b] принимает наибольшее и наименьшее значения. Обозначим эти значения М и m соответственно. Возможны два различных случая М = m и M ¹ m.

 

Пусть M = m. Тогда функция f(x) на отрезке [a, b] сохраняет постоянное значение и в любой точке интервала ее производная равна нулю. В этом случае за e можно принять любую точку интервала.

 

Пусть М = m. Так значения на концах отрезка равны, то хотя бы одно из значений М или m функция принимает внутри отрезка [a, b]. Обозначим e, a < e < b точку, в которой f(e) = M. Так как М- наибольшее значение функции, то для любого Dх ( будем считать, что точка e + Dх находится внутри рассматриваемого интервала) верно неравенство:

Df(e) = f(e + Dx) – f(e) £ 0

 

При этом

Но так как по условию производная в точке e существует, то существует и предел .

Т.к. и , то можно сделать вывод:

 

 

Теорема доказана.

 

Теорема Ролля имеет несколько следствий:

 

1) Если функция f(x) на отрезке [a, b] удовлетворяет теореме Ролля, причем f(a) = f(b) = = 0, то существует по крайней мере одна точка e, a < e < b, такая, что f¢(e) = 0. Т.е. между двумя нулями функции найдется хотя бы одна точка, в которой производная функции равна нулю.

 

2) Если на рассматриваемом интервале (а, b) функция f(x) имеет производную (n-1)- го порядка и n раз обращается в нуль, то существует по крайней мере одна точка интервала, в котором производная (n – 1) – го порядка равна нулю.

 

 

Теорема Лагранжа.

(Жозеф Луи Лагранж (1736-1813) французский математик)

 

Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (а, b), то на этом интервале найдется по крайней мере одна точка e

a < e < b, такая, что .

 

Это означает, что если на некотором промежутке выполняются условия теоремы, то отношение приращения функции к приращению аргумента на этом отрезке равно значению производной в некоторой промежуточной точке.

 

Рассмотренная выше теорема Ролля является частным случаем теоремы Лагранжа.

Отношение равно угловому коэффициенту секущей АВ.

у

 

В

 

 

А

 

0 а e b x

Если функция f(x) удовлетворяет условиям теоремы, то на интервале (а, b) существует точка e такая, что в соответствующей точке кривой y = f(x) касательная параллельна секущей, соединяющей точки А и В. Таких точек может быть и несколько, но одна существует точно.

 

 

Доказательство. Рассмотрим некоторую вспомогательную функцию

F(x) = f(x) – yсек АВ

Уравнение секущей АВ можно записать в виде:

Функция F(x) удовлетворяет теореме Ролля. Действительно, она непрерывна на отрезке [a, b] и дифференцируема на интервале (а, b). По теореме Ролля существует хотя бы одна точка e, a < e < b, такая что F¢(e) = 0.

 

Т.к. , то , следовательно

 

Теорема доказана.

Определение. Выражение называется формулой

Лагранжаили формулой конечных приращений.

В дальнейшем эта формула будет очень часто применяться для доказательства самых разных теорем.

Иногда формулу Лагранжа записывают в несколько другом виде:

,

где 0 < q < 1, Dx = b – a, Dy = f(b) – f(a).

Теорема Коши.

 

( Коши (1789-1857)- французский математик)

 

Если функции f(x) и g(x) непрерывны на отрезке [a, b] и дифференцируемы на интервале (a, b) и g¢(x) ¹ 0 на интервале (a, b), то существует по крайней мере одна точка e, a < e < b, такая, что

.

 

Т.е. отношение приращений функций на данном отрезке равно отношению производных в точке e.

 

Для доказательства этой теоремы на первый взгляд очень удобно воспользоваться теоремой Лагранжа. Записать формулу конечных разностей для каждой функции, а затем разделить их друг на друга. Однако, это представление ошибочно, т.к. точка e для каждой из функции в общем случае различна. Конечно, в некоторых частных случаях эта точка интервала может оказаться одинаковой для обеих функций, но это- очень редкое совпадение, а не правило, поэтому не может быть использовано для доказательства теоремы.

 

Доказательство. Рассмотрим вспомогательную функцию

,

которая на интервале [a, b] удовлетворяет условиям теоремы Ролля. Легко видеть, что при х = а и х = b F(a) = F(b) = 0. Тогда по теореме Ролля существует такая точка e,

a < e < b, такая, что F¢(e) = 0. Т.к.

, то

 

А т.к. , то

 

Теорема доказана.

 

Следует отметить, что рассмотренная выше теорема Лагранжа является частным случаем (при g(x) = x) теоремы Коши. Доказанная нами теорема Коши очень широко используется для раскрытия так называемых неопределенностей. Применение полученных результатов позволяет существенно упростить процесс вычисления пределов функций, что будет подробно рассмотрено ниже.

 

 

Раскрытие неопределенностей.

Правило Лопиталя.

(Лопиталь (1661-1704) – французский математик)

 

 

К разряду неопределенностей принято относить следующие соотношения:

 

Теорема (правило Лопиталя). Если функции f(x) и g(x) дифференцируемы в вблизи точки а, непрерывны в точке а, g¢(x) отлична от нуля вблизи а и f(a) = g(a) = 0, то предел отношения функций при х®а равен пределу отношения их производных, если этот предел (конечный или бесконечный) существует.

 

Доказательство. Применив формулу Коши, получим:

 

где e - точка, находящаяся между а и х. Учитывая, что f(a) = g(a) = 0:

 

Пусть при х®а отношение стремится к некоторому пределу. Т.к. точка e лежит между точками а и х, то при х®а получим e®а, а следовательно и отношение стремится к тому же пределу. Таким образом, можно записать:

.

 

Теорема доказана.

 

Пример: Найти предел .

 

Как видно, при попытке непосредственного вычисления предела получается неопределенность вида . Функции, входящие в числитель и знаменатель дроби удовлетворяют требованиям теоремы Лопиталя.

f¢(x) = 2x + ; g¢(x) = ex;

 

;

 

Пример: Найти предел .

; ;

.

 

Если при решении примера после применения правила Лопиталя попытка вычислить предел опять приводит к неопределенности, то правило Лопиталя может быть применено второй раз, третий и т.д. пока не будет получен результат. Естественно, это возможно только в том случае, если вновь полученные функции в свою очередь удовлетворяют требованиям теоремы Лопиталя.

Пример: Найти предел .

 

; ;

; ;

; ;

 

Следует отметить, что правило Лопиталя – всего лишь один из способов вычисления пределов. Часто в конкретном примере наряду с правилом Лопиталя может быть использован и какой – либо другой метод (замена переменных, домножение и др.).

 

 

Пример: Найти предел .

 

; ;

- опять получилась неопределенность. Применим правило Лопиталя еще раз.

 

; ;

- применяем правило Лопиталя еще раз.

 

; ;

;

 

Неопределенности вида можно раскрыть с помощью логарифмирования. Такие неопределенности встречаются при нахождении пределов функций вида , f(x)>0 вблизи точки а при х®а. Для нахождения предела такой функции достаточно найти предел функции lny = g(x)lnf(x).

 

Пример: Найти предел .

 

Здесь y = xx, lny = xlnx.

Тогда . Следовательно

 

Пример: Найти предел .

 

; - получили неопределенность. Применяем правило Лопиталя еще раз.

; ;

 

Производные и дифференциалы высших порядков.

Пусть функция f(x)- дифференцируема на некотором интервале. Тогда, дифференцируя ее, получаем первую производную

Если найти производную функции f¢(x), получим вторую производнуюфункции f(x).

т.е. y¢¢ = (y¢)¢ или .

 

Этот процесс можно продолжить и далее, находя производные степени n.

.

 

 

Общие правила нахождения высших производных.

Если функции u = f(x) и v = g(x) дифференцируемы, то

 

1) (Сu)(n) = Cu(n);

2) (u ± v)(n) = u(n) ± v(n);

3)

.

Это выражение называется формулой Лейбница.

 

Также по формуле dny = f(n)(x)dxn может быть найден дифференциал n- го порядка.

 

 

Исследование функций с помощью производной.

Возрастание и убывание функций.

Теорема. 1) Если функция f(x) имеет производную на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке неотрицательна, т.е. f¢(x) ³ 0.

2) Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на промежутке (а, b), причем f¢(x) > 0 для a < x < b, то эта функция возрастает на отрезке [a, b].

 

Доказательство.

1) Если функция f(x) возрастает, то f(x + Dx) > f(x) при Dx>0 и f(x + Dx) < f(x) при Dх<0,

тогда:

 

2) Пусть f¢(x)>0 для любых точек х1 и х2, принадлежащих отрезку [a, b], причем x1<x2.

 

Тогда по теореме Лагранжа: f(x2) – f(x1) = f¢(e)(x2 – x1), x1 < e < x2

По условию f¢(e)>0, следовательно, f(x2) – f(x1) >0, т.е. функция f(x) возрастает.

 

Теорема доказана.

 

Аналогично можно сделать вывод о том, что если функция f(x) убывает на отрезке [a, b], то f¢(x)£0 на этом отрезке. Если f¢(x)<0 в промежутке (a, b), то f(x) убывает на отрезке [a, b].

Конечно, данное утверждение справедливо, если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (a, b).

 

Доказанную выше теорему можно проиллюстрировать геометрически:

 

y y

 

j j j j

x x

 

 

Точки экстремума.

 

Определение. Функция f(x) имеет в точке х1 максимум, если ее значение в этой точке больше значений во всех точках некоторого интервала, содержащего точку х1. Функция f(x) имеет в точке х2 минимум, если f(x2 +Dx) > f(x2) при любом Dх (Dх может быть и отрицательным).

 

Очевидно, что функция, определенная на отрезке может иметь максимум и минимум только в точках, находящихся внутри этого отрезка. Нельзя также путать максимум и минимум функции с ее наибольшим и наименьшим значением на отрезке – это понятия принципиально различные.

 

Определение. Точки максимума и минимума функции называются точками экстремума.

 

Теорема. (необходимое условие существования экстремума) Если функция f(x) дифференцируема в точке х = х1 и точка х1 является точкой экстремума, то производная функции обращается в нуль в этой точке.

 

Доказательство. Предположим, что функция f(x) имеет в точке х = х1 максимум.

Тогда при достаточно малых положительных Dх>0 верно неравенство:

, т.е.

Тогда

По определению:

 

Т.е. если Dх®0, но Dх<0, то f¢(x1) ³ 0, а если Dх®0, но Dх>0, то f¢(x1) £ 0.

 

А возможно это только в том случае, если при Dх®0 f¢(



Дата добавления: 2017-09-01; просмотров: 1065;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.181 сек.