Приведение системы линейных уравнений к виду, удобному для итераций


 

Процессы последовательных приближений и метод Зейделя для линейных систем х = b + aC сходятся к единому решению, независимо от выбора начального вектора, если

или

.

 

Таким образом, для сходимости вышеуказанных итерационных процессов достаточно, чтобы значения элементов aij при i ¹ j были небольшими по абсолютной величине. Это равносильно тому, что если для линейной системы АХ = В модули диагональных коэффициентов каждого уравнения системы больше суммы модулей всех остальных коэффициентов (не считая свободных членов), то итерационные процессы для этой системы сходятся, т.е. мы имеем систему

.

Причем, если то процессы последовательных приближений и Зейделя для данной системы сходятся. Применяя элементарные преобразования, линейную систему АХ = В можно заменить такой эквивалентной системой Х = р + aХ, для которой условия сходимости будут выполнены.

 

ЛЕКЦИЯ 5. МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

 

При решении практических задач, часто приходится сталкиваться с решением уравнений. Всякое уравнение с одним неизвестным можно представить в виде , где и – заданные функции, определенные на некотором числовом множестве Х, называемом областью допустимых значений уравнения или

если обозначить левую часть за , то получим уравнение .

Совокупность нескольких уравнений с несколькими неизвестными называют системой уравнений.

 



Дата добавления: 2021-09-07; просмотров: 343;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.