Реакции под действием дейтонов
Реакции под действием дейтонов обладают рядом особенностей. Дейтон может взаимодействовать с ядрами не только с образованием составного ядра, но и путем прямого взаимодействия.
Если дейтон образует с ядром-мишенью составное ядро, то энергия возбуждения составного ядра оказывается примерно равной 14 МэВ из-за большого различия в величинах удельной энергии связи для дейтона и большинства ядер.
Энергия связи составного ядра при захвате дейтона
ΔWc(A+2, Z+1)= ![]() | (4.6.17) |
Энергия связи дейтона относительно составного ядра
![]() | (4.6.18) |
Выразив массы через энергии связи по формуле (1.4.11), получим
![]() | (4.6.19) |
Поскольку для большинства ядер DW » 8А МэВ, то
Sd ≈ 8A – 8(A-2) – 2,2 » 14 МэВ.
Таким образом, энергия возбуждения составного ядра, даже без учета кинетической энергии дейтона, значительно превышает не только среднее значение связи нуклона в ядре, но и энергию связи α-частицы (см. таблицу 4.6.1). Поэтому все реакции (d, p), (d, n), (d, α), если они идут через составное ядро, являются экзоэнергетическими и протекают с относительно большими вероятностями.
Наибольшим выходом при относительно небольшой энергии дейтонов обладают реакции
и
d + t ® 4Не+ n, Q = 17,6 МэВ. | (4.6.21) |
Такая большая величина энергии реакции (4.6.21) объясняется большой удельной энергией связи образующегося ядра 4Не. Эта реакция при наименьшей высоте кулоновского барьера для заряженных частиц имеет наибольший выход.
![]() ![]() ![]() |
Сечения верхнего канала реакции (4.6.20) и сечение реакции (4.6.21) показаны на рисунках 4.6.3 и 4.6.4. Из рисунков видно, что полное сечение реакции (4.6.20) достигает максимума в 100 мбарн при энергии 2 МэВ. Особенно велико сечение взаимодействия дейтона с тритоном (ядром трития), оно равно 5 барн при энергии дейтона всего 0,11 MэB.
Реакции (d, p) и (d, n) могут идти без образования составного ядра. Это обусловлено тем, что энергия связи дейтона составляет DWd ≈ 2,2 МэВ, т.е. около 1 МэВ/нуклон, что много меньше 8 МэВ/нуклон – средней энергии связи нуклона в большинстве ядер. Поэтому среднее расстояние между протоном и нейтроном в ядре дейтона относительно велико и составляет ~ 4·10-13 см. Для сравнения среднее расстояние между нуклонами в большинстве ядер не превышает 2·10-13 см (см. (2.2.3)).
Взаимодействие дейтона с ядром может закончиться поглощением одного из нуклонов, тогда как второй останется за пределами ядра и продолжит свое движение преимущественно в направлении первоначального движения. При этом тяжелые ядра, у которых большой кулоновский барьер, будут захватывать преимущественно нейтроны, так как в результате электростатического отталкивания дейтон будет ориентироваться своим протоном от ядра. В результате на средних и тяжелых ядрах выход реакции (d, p) в несколько раз превышает выход реакции (d, n), что противоречит механизму составного ядра. При распаде составного ядра испускание протона всегда затруднено кулоновским барьером и предпочтительным является, наоборот, вылет нейтрона.
Дата добавления: 2021-07-22; просмотров: 322;