Несчетность множества действительных чисел


Легко показать, что множество всех действительных чисел имеет такую же мощность, как и множество чисел промежутка . Действительно, биективное отображение этих множеств легко устанавливается с помощью непрерывной монотонной функции, определенной на одном из этих множеств и принимающей все значения другого множества, (рис. 39).

Рис.39

 

Теперь будем доказывать несчетность множества чисел . Заметим, что доказать несчетность какого-то множества нелегко. Ведь доказательство счетности множества сводится просто к придумыванию правила, по которому нумеруются все его элементы. А доказать несчетность какого-то множества — это значит доказать, что такого правила нет и быть не может. Иными словами, какое бы правило мы ни придумали, всегда найдется незанумерованный элемент этого множества.

Для доказательства несчетности множества будем использовать так называемый «диагональный метод», оригинально предложенный Кантором в 1891г.

Предположим противное, то есть предположим счетность множества ; это означает, что все числа промежутка можно занумеровать в некоторую счетную последовательность . Известно, что каждое действительное число можно записать в виде бесконечной десятичной дроби; будем использовать эту запись для чисел :

,

где — это любые из цифр 0, 1, ... , 9, взятые в любом порядке.

Теперь будем строить новое число следующим образом:

, …

 


Например, если то

 

 

Очевидно, что число и отличается от всех чисел , потому что:

, так как отличается от первой цифрой после запятой,

, так как отличается от второй цифрой после запятой,
, так как отличается от третьей цифрой после запятой, и т.д.

Таким образом, число не попало в счетную последовательность по какому правилу бы мы ее ни составляли.

Очевидно, что аналогичных «незанумерованных» чисел построить можно сколько угодно, например, заменяя цифры 1 и 0 на другие цифры. Следовательно, предположение о возможности занумеровать все числа является неверным. Из этого следует, что множество не является счетным, но имеет бо́льшую мощность, чем мощность счетного множества.

Мощность множества , а также эквивалентного ему множества называется мощностью континуум. Легко доказывается, что такую же мощность имеют любые непрерывные подмножества множества . Для этого достаточно построить биективное отображение заданного непрерывного множества на промежуток или на все множество .



Дата добавления: 2021-07-22; просмотров: 372;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.