Политропный процесс


Расчет процессов базируется на первом и втором началах термодинамики, записанных в дифференциальной форме для одного килограмма термодинамической системы:

,

.

Входящие в эти выражения дифференциалы вычисляются следующим образом:

Кроме того, для идеального газа имеем

На практике чаще всего имеют дело с термодинамическими процессами, в течение которых на каждых малых участках процесса можно с достаточной точностью считать постоянным соотношение между количествами работы и теплоты. Такие процессы называют политропными. Для них

Поскольку для идеального газа , уравнение политропного процесса может быть записано в виде

,

т.е. политропный процесс можно определить как процесс с постоянной теплоемкостью, которая может принимать любые значения, .

Соотношения между параметрами в политропном процессе можно получить на основании уравнений политропного процесса в переменных . Используем для этого две формы записи I начала термодинамики:

Перенеся слагаемые с в левые части этих выражений и разделив второе уравнение на первое, получим

.

Комплекс (постоянный в случае политропного процесса)

носит название показателя политропы. Имеем, таким образом

.

Разделяя переменные в этом уравнении и интегрируя, получаем связь между давлением и объемом в политропном процессе:

.

Получим уравнение политропного процесса в переменных из уравнения для второго закона термодинамики:

,

Откуда .

Обычно на практике политропный процесс задается не значением теплоемкости c, а значением показателя политропы n, тогда теплоемкость процесса вычисляется как

или ,

где величина определена ранее.



Дата добавления: 2021-07-22; просмотров: 323;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.