Количественная обработка материалов
Статистические методы исследовательской работы применяются на этапах планирования, сбора материалов, сводки и обработки материалов исследования и при представлении его результатов. Не следует преувеличивать значение применения статистических методов. Статистика не раскрывает педагогической сущности явлений. Этими средствами можно лишь констатировать статистически достоверные различия между двумя исследуемыми явлениями, но объяснение сущности причинно-следственных отношений этих различий должно осуществляться методами теоретического анализа. Статистика не требуется при углубленном изучении отдельного, единичного явления, но статистика необходима при рассмотрении совокупности явлений, состоящих из множества отдельных элементов.
Отдельные явления, входящие в совокупность, называются элементами совокупности, обычно обозначаются xi и yi. Если обозначить частоту отдельных элементов fi, то их сумма (åfi) называется объемом совокупности и обозначается буквой N.
Для количественной характеристики совокупностей используют главным образом средние показатели такие, как: среднее арифметическое , мода (Mo), медиана (Me). Те или иные средние показатели вычисляют с учетом задач исследования и конкретных особенностей исследуемых явлений. Например, о результатах успеваемости класса надо судить не по отдельному конкретному ученику, а по средним показателям всей группы.
Средние показатели не всегда подводят к верным выводам, источником достоверной научной информации они становятся лишь только тогда, когда при их вычислении учитывается закон больших чисел. Сущность закона больших чисел заключается в следующем: закономерности совокупностей равномерного состава можно вычислить только при наличии достаточно большого количества данных; точность измерения закономерностей возрастает с увеличением количества элементов объекта исследования; отклонения отдельных явлений от среднего в ту или другую сторону, обусловленные несущественными, случайными обстоятельствами, при большом количестве элементов взаимно компенсируются; эти закономерности можно количественно выразить только в виде средних показателей. Необходимо иметь в виду, что результаты вычисления средних значений можно использовать лишь при нормальном распределении и шкале отношений или хотя бы на равномерной интервальной шкале.
Применение в педагогическом исследовании статистических методов включает в себя следующие этапы. Сбор эмпирических данных методами наблюдения, тестирования, эксперимента, анкетирования и других в целях получения количественных сведений о каких-либо явлениях, заполнение математической модели конкретными цифрами. Сводка полученных сведений, нахождение обобщающих числовых данных и их обработка в пределах формальной математической модели. Составление математической модели для последующего описания с помощью цифр существенных свойств изучаемого объекта. Анализ и интерпретация данных, конструирование содержательных педагогических выводов.
Имеются три главных раздела статистики: описательная статистика, индуктивная статистика, измерение корреляции.
Описательная статистика направлена на то, чтобы описывать, подытоживать и воспроизводить в виде таблиц или графиков данные того или иного распределения, вычислять среднее для данного распределения, его размах и дисперсию.
Индуктивная статистика необходима тогда, когда требуется проверить, можно ли распространить результаты, полученные на данной выборке, на всю популяцию, из которой взята эта выборка. То есть, до какой степени можно путем индукции обобщить на большее число объектов ту или иную закономерность, обнаруженную при изучении ограниченной группы в ходе какого-либо наблюдения или эксперимента. Следовательно, индуктивная статистика необходима после получения эмпирических данных, на этапе обобщения и конструирования выводов.
Тот раздел статистики, в котором даются правила измерения корреляции, необходимо применять с целью изучения степени связи между собой двух переменных с тем, чтобы можно было предсказывать возможные значения одной из них, если известна другая.
Степень корреляции значений двух переменных может быть вычислена двумя способами: с применением параметрических и с помощью непараметрических методов (тестов). Наиболее широкое применение находят параметрические методы. Название «параметрические» методы возникло от того, что при этом методе сравнивают параметры распределения средних показателей таких, как среднее значение или дисперсия данных. Непараметрические методы используются в том случае, когда исследователь имеет дело с очень малыми выборками или с качественными данными; их достоинство в простоте расчетов и применения.
Обоснованный выбор как параметрических методов, так и непараметрических в процессе педагогического исследования во многом определен полученными экспериментальными данными.
Данные в статистике – это основные элементы, подлежащие анализу. Данными могут быть количественные результаты, любая информация, которая может быть классифицирована или разбита на категории с целью обработки.
Существуют три вида статистических данных. Количественные данные, получаемые при измерениях (например, данные о весе, размерах, температуре, времени, результатах тестирования), их можно распределить по шкале с равными интервалами. Порядковые данные, которые получаются при упорядочивании количественных данных в возрастающей последовательности (1-й, ..., 7-й, ..., 100-й, ...; А, Б, В, ...). Качественные данные, представляющие собой свойства, признаки элементов выборки или популяции. Их нельзя измерить, и единственной их количественной оценкой служит частота встречаемости (число учащихся башкир, татар, русской национальности и др.; учителя со средним специальным, высшим педагогическим образованием, без педагогического образования; учителя мужского и женского пола).
Только количественные данные подлежат анализу посредством параметрических методов, в основе которых лежат параметры (такие, например, как средняя арифметическая). Но и то лишь тогда, когда число этих данных достаточно, чтобы проявилось нормальное распределение. Для использования параметрических методов в принципе необходимы три условия: данные должны быть количественными, их число должно быть достаточным, а их распределение – нормальным. Во всех остальных случаях всегда рекомендуется использовать непараметрические методы.
Дата добавления: 2021-06-28; просмотров: 337;