Лекция 21. Свойства функции: монотонность, четность, ограниченность, периодичность.
К важнейшим свойствам функций относится четность/нечетность.
Функция называется нечетной, если при изменении знака аргумента, она меняет свое значение на противоположное. Формульная запись этого выглядит так . Это значит, что после подстановки в функцию на место всех иксов значений «минус икс», функция изменит свой знак. График такой функции симметричен относительно начала координат.
Примерами нечетных функций являются и др.
Например, график действительно обладает симметричностью относительно начала координат:
Функция называется четной, если при изменении знака аргумента, она не меняет свое значение. Формульная запись этого выглядит так . Это значит, что после подстановки в функцию на место всех иксов значений «минус икс», функция в результате не изменится. График такой функции симметричен относительно оси .
Примерами четных функций являются и др.
К примеру, покажем симметричность графика относительно оси :
Если функция не относится ни к одному из указанных видов, то ее называют ни четной ни нечетной или функцией общего вида. У таких функций нет симметрии.
Такой функцией, например, является недавно рассмотренная нами линейная функция с графиком:
Особым свойством функций является периодичность. Дело в том, что периодичными функциями, которые рассматриваются в стандартной школьной программе, являются только тригонометрические функции. Мы уже подробно о них говорили при изучении соответствующей темы.
Периодичная функция – это функция, которая не меняет свои значения при добавлении к аргументу определенного постоянного ненулевого числа.
Такое минимальное число называют периодом функции и обозначают буквой .
Формульная запись этого выглядит следующим образом: .
Посмотрим на это свойство на примере графика синуса:
|
Вспомним, что периодом функций и является , а периодом и – .
Как мы уже знаем, для тригонометрических функций со сложным аргументом может быть нестандартный период. Речь идет о функциях вида:
У них период равен . И о функциях:
У них период равен .
Как видим, для вычисления нового периода стандартный период просто делится на множитель при аргументе. От остальных видоизменений функции он не зависит.
Промежутки монотонности функции
Очень важным свойством функции является ее монотонность. Зная это свойство различных специальных функций, можно определить поведение различных физических, экономических, социальных и многих других процессов.
Выделяют следующие виды монотонности функций:
1) функция возрастает, если на некотором интервале, если для любых двух точек и этого интервала таких, что выполнено, что . Т.е. большему значению аргумента соответствует большее значение функции;
2) функция убывает, если на некотором интервале, если для любых двух точек и этого интервала таких, что выполнено, что . Т.е. большему значению аргумента соответствует меньшее значение функции;
3) функция неубывает, если на некотором интервале, если для любых двух точек и этого интервала таких, что выполнено, что ;
4) функция невозрастает, если на некотором интервале, если для любых двух точек и этого интервала таких, что выполнено, что .
Для первых двух случаев еще применяют термин «строгая монотонность».
Два последних случая являются специфическими и задаются обычно в виде композиции из нескольких функций.
Отдельно отметим, что рассматривать возрастание и убывание графика функции следует именно слева-направо и никак иначе.
Дата добавления: 2016-06-05; просмотров: 6494;