Технология решения задач одномерной оптимизации средствами математических пакетов
Пакет Mathcad с помощью встроенных функций решает задачу нахождения только локального экстремума. Для нахождения глобального экстремума необходимо вычислить все локальные экстремумы и выбрать среди них наибольший (наименьший). Отметим несколько подходов в поиске экстремума.
Для непрерывной функции от одной переменной можно использовать равенство нулю её производной, и путем решения полученного уравнения получить точки экстремумов. Уравнение можно решить с использованием встроенной функции root. При этом следует принимать во внимание знак второй производной. Если на отрезке, содержащем точку экстремума, , то это локальный минимум, а если , то это локальный максимум.
Пример 6.6.5-1. Найти глобальный минимум функции .
Дальнейшее исследование показало, что глобальным минимумом является точка х = -3.679.
Для непрерывных функций также удобно пользоваться такими встроенными функциями как Maximize(y,x) и Minimize(y,x). Здесь ключевое слово Given можно опускать, поскольку оно необходимо лишь при наличии ограничений.
Пример 6.6.5-2. Найти минимум и максимум функции y(x)=2x3-16x+5.
Для ступенчатой функции или функции с переломами можно использовать встроенную функцию Minеrr( ). Предварительно по графику выбирается число, заведомо большее (или меньшее) экстремального значения функции, и записывается в качестве ограничения в блоке Given. Функция Minеrr( ) возвращает значение аргумента, при котором расхождение между заданным числом и значением функции минимально.
Дата добавления: 2021-05-28; просмотров: 302;