Электромагнитные датчики
Электромагнитные датчики получили широкое применение в различных областях науки и техники благодаря достаточно высокой точности, широким функциональным возможностям, надежности, особенно при работе в тяжелых эксплутационных условиях.
Датчики, преобразующие входную величину - перемещение в изменении индуктивности, называются индуктивными, а в изменение взаимоиндуктивности - трансформаторными или реже взаимоиндуктивными.
Индуктивный датчик (рис.2.3) основан на изменении индуктивности обмотки 1 электромагнитного дросселя в зависимости от воздушного зазора dв между сердечником 2 и якорем 3. Здесь входным воздействием является перемещение якоря 3, а выходной величиной индуктивности L, или выходное сопротивление x = ω ∙ L (где ω - частота переменного тока),
Рис. 2.3. Схема индуктивного датчика
L = W2/ ( RM + RMB ) = W2 / (RM + | 2δв | ) | (2.5) | |
μ0 ∙ SB |
где W - число витков обмотки катушки; RM - магнитное сопротивление магнитопровода; RMB = 2δB ∕ ( μ0 ∙ SB ) - магнитное сопротивление воздушного зазора (μ0 - магнитная проницаемость воздуха).
Достоинством индуктивных датчиков является простота и надежность. Недостатки: сравнительно малая чувствительность; зависимость индуктивного сопротивления от частоты тока; сравнительно небольшой диапазон линейного участка статической характеристики.
Дифференциально-трансформаторный преобразователь (ДТП) -получил особо широкое применение. Электрическая схема ДТП с подвижным сердечником, перемещающимся относительно обмоток, представлена на рис. 2.4.
Рис.2.4. Дифференциально-трансформаторный
преобразователь (ДТП)
Первичная обмотка 1 состоит из двух секций, намотанных согласно, а вторичная обмотка состоит из секций 3 и 4, включенных встречно. Подвижный сердечник 2 соединен чувствительным элементом, на который воздействует измеряемая физическая величина (перемещение, давление и т.п.).
Магнитный поток от первичной обмотки индуктирует в секциях вторичной обмотки ЭДС е1 и е2, значение которых зависит от величины тока в обмотке 1, его частоты и взаимных индуктивностей М1 и М2 между секциями 3 и 4 и первичной обмотки. При среднем (нейтральном) положении сердечника взаимные индуктивности М1 и М2 равны. При отклонении сердечника вверх или вниз от нейтрального положения значение одной из взаимных индуктивностей увеличивается, а другой – уменьшается.
ЭДС на выходе ДТП определяется по формуле:
Е = -j ∙ ω ∙ Ι ∙ M, (2.6) где ω = 2 π f ( f – частота питания); I – ток питания первичной обмотки преобразователя; М1 = М1 – М2 – взаимная индуктивность между выходной и первичной обмотками, зависящая от положения сердечника в катушке преобразователя.
2.2.2. Измерительные схемы для датчиков
Малые напряжения постоянного тока, являющиеся выходной величиной генераторных ПИП (например, термоэлектрических термометров), можно измерять либо методом непосредственного измерения с помощью милливольтметра, либо путем использования компенсационной (потенциометрической) или дифференциальной схем.
Компенсационная схема, являющаяся одной из основных в средствах автоматического контроля различных параметров технологических процессов, основана на компенсации (уравновешивании) измеряемой величины известным падением напряжения на калиброванном сопротивлении.
Дифференциальная измерительная схема служит для измерения разности между измеряемой величиной и некоторой другой величиной, заранее известной.
Мостовая измерительная схема – наиболее распространенная при автоматическом контроле технологических параметров. Параметрические ПИП включают в мостовые схемы, в которых текущее значение параметра ПИП сравнивается с заданным его значением (в уравновешенных мостах) или в измерительной диагонали моста образуется напряжение, функционально связанное с измерением контролируемого параметра технологического процесса (неуравновешенные мосты).
При уравновешенной мостовой схеме применяется нулевой метод измерения тока в диагонали: измерение параметра ПИП (сопротивление, индуктивность, емкость) компенсируется изменением сопротивления другого плеча до момента полного исчезновения тока в измерительной диагонали .
Приемниками информации от датчиков в электрических системах передачи с унифицированным токовым сигналом могут быть промежуточные преобразователи, регуляторы, измерительные (вторичные) приборы и программируемые микропроцессорные контроллеры (ПМК). Большинство датчиков оснащены преобразователями типа «сила-ток» или «перемещение-ток». Современное бесщитовое распределенное управление существенно ограничило применение вторичных аналоговых приборов, особенно для средних и больших АСУТП.
2.2.3. Вторичные приборы
1. Приборы комплекса К140.
Построены по принципу электромеханического следящего уравновешивания и являются одним из наиболее массовых средств автоматизации в большинстве отраслей народного хозяйства.
Приборы выполняют следующие функции: измерение технологических параметров (таких как температура, давление расход и др.) и представление результатов в аналоговой форме; регистрацию параметров на диаграммных лентах или дисках; стабилизацию или допусковый контроль (позиционное регулирование и сигнализация; интегрирование параметров во времени; преобразование и размножение сигналов от датчиков в стандартные электрические сигналы постоянного тока или пневматические.
Модификация приборов КС1, КП1, КС2 общепромышленного назначения, используемая как средство автоматизированных систем управления технологическими процессами (АСУТП) в зависимости от вида входного сигнала делятся на следующие группы:
Потенциометры – приборы, работающие от входных сигналов напряжения или силы постоянного тока термопреобразователей термоэлектрических, источников ЭДС, сигналов тока и напряжения;
Мосты – приборы, работающие с термопреобразователями сопротивления; дифференциально-транспортные приборы, работающие от входных сигналов в виде изменения взаимной индуктивности. В основу работы приборов положен компенсационный метод измерения.
Принципиальная схема потенциометра одноканального и многоканального типов КПП1, КП140, КСП1, КСП2 приведена на рис.2.5.
Выходной сигнал термоэлектрического преобразователя (термопары), источника постоянного тока напряжения или телескопа или радиационного пирометра сравнивается с сигналом обратной связи, который снимается с уравновешивающего реохорда Rp.. Разность этих сигналов поступает на вход усилителя У, преобразуется в напряжение переменного тока и усиливается для приведения в действие реверсивного двигателя М1. Вращение выходного вала М1 с помощью механической передачи преобразуется в прямолинейное движение каретки, на которой закреплены контакты движка реохорда, указатель и устройство регистрации. Положение указателя в момент равновесия определяет значение измеряемого параметра, которое регистрируется на движущейся диаграммной ленте.
В потенциометрах, работающих с термопарами ТХА, ТХК,ТПП, ТВП, один из резисторов измерительной схемы служит для компенсации ЭДС свободных концов термопары. Этот резистор выполнен из медной проволоки и помещен в непосредственной близости от свободных концов термопары или удлинительных термоэлектродных проводов.
Принципиальная схема мостов типа КПМ1, КСМ1, КСМ2 представлена на рис.2.6. Термопреобразователи сопротивления Rt подключаются к прибору по трехпроводной схеме, что снижает температурную погрешность изменением сопротивления соединительных проводов при изменении температуры окружающего воздуха. К одной диагонали мостовой схемы проводится питание, напряжение с другой диагонали подается на вход усилителя У. При изменении температуры измеряемой среды изменяется сопротивление термопреобразователя и на входе усилителя возникает на
Рис.2.6. Принципиальная электрическая схема мостов | |
Рис.2.5. Принципиальная электрическая схема потенциометров |
пряжение резбаланса, которое усиливается и приводит в действие реверсивный двигатель М1. Далее работа моста аналогична работе потенциометра.
2.Приборы регистрирующие типа ДИСК-250
Предназначены для измерения силы и напряжения постоянного тока, а также неэлектрических величин, преобразованных в электрические сигналы и активное сопротивление.
Принцип действия приборов ДИСК-250 основан на методике непрерывной компенсации измеряемой величины в следящей системе прибора; уравновешивание схемы происходит автоматически с помощью усилителя и реверсивного двигателя, связанного с движком реохорда. В приборах предусмотрена автоматическая компенсация температуры свободных концов термоэлектрического термометра. Краткое описание модификаций приборов ДИСК-250 и КСД-250, выпускаемых заводом Теплоприбор(г. Челябинск), приведена в таблице 2.1.
Прибор аналоговый показывающий и регистрирующий с дисковой диаграммой и встроенными источниками питания и устройством корнеизвлечения типа ДИСК-250ДД предназначен для использования в системах коммерческого учета тепло- и энергоносителей в коммунальном хозяйстве, энергетике, пищевой, химической и других отраслях промышленности. Входным сигналом для прибора служит выходной токовый сигнал от датчика давления, уровня, перепада давления или датчиков расхода (дифференциального давления с квадратичной зависимостью выходного сигнала от измеряемого расхода), например, датчиков типа «Метран», «Сапфир».
Вторичные показывающие и регистрирующие приборы КСД-250 разработаны взамен комплекса КСД3 и применяются в системах регулирования и управления технологическими процессами в отраслях промышленности, где традиционно применялись приборы КСД 3: энергетике, пищевой, металлургической, химической, нефтехимической, нефтеперерабатывающей и т. д.
Таблица 2.1. | Заменяемый прибор | КС 1, КС 2 РП 160 | КСТЗ-С | КСД 3, КСД 2, КСД 1 |
Краткое описание | Базовая модель «Диск – 250» Входной сигнал: «низкого» уровня непосредственно от датчиков температуры (термопреобразователей сопротивления и термопар) и «высокого» уровня (мА, В) от датчиков технологических параметров (уровня, расхода, давления). Регистрация: дисковая диаграмма d 250 мм. Сигнализация: трехпозиционная контактная Регулирование: трехпозиционное бесконтактное или релейное пропорционально-интегральное (ПИ) токовое или пневматическое (прибор укомплектован электропневмопреобразователем ЭГП 324-выходной пневматический сигнал 0,2.. 1 кгс/см2 ) Преобразование: входного сигнала в унифицированный токовый 0..5 или 4..20 мА Особенности “Диск – 250 И” Входной сигнал: только от датчиков температуры, искробезопасная входная цепь уровня “ia” маркировка “ExiallC” Регулирование: Лишь трехпозиционное бесконтактное, ПИ токовое или пневматическое Особенности “Диск – 250 ДД” Входной сигнал: только от датчиков давления или расхода (мА), в прибор встроены источник питания или устройство извлечения корня, линеаризующее показания и регистрацию расхода. Особенности «Диск – 250 П» Регулирование: только программное бесконтактное или программное релейное регулирующее устройство с типовой программной типа «трапеция» подъем, выдержка, спад (заменяет приборы КПЗ-ЛЭ, РУ-5 для трех участков регулирования) | Особенности «Диск – 250 ТН» Входной сигнал: только от силоизмерительных тензорезисторных датчиков используемых в системах автоматического дозирования Регулирование: лишь трехпозиционное релейное | Входной сигнал: от датчиков расхода, уровня, давления типа ДМ-3583М (мГн) Регистрация: дисковая диаграмма d 250 мм. Сигнализация: трехпозиционная контактная Регулирование: трехпозиционное бесконтактное или релейное, ПИ токовое или пневматическое (прибор укомплектован электропневмопреобразователем ЭП 1324-выходной пневматический сигнал 0,2 1 кгс/см) Преобразование: входного сигнала в унифицированный токовый (0..5 или 4..20 мА) или частотный (4..8 кГц) сигнал. Рекомендуем заменять на прибор КСД-250 выпускаемый ранее прибор КСД 3 | |
Тип прибора | Тип прибора | Аналоговые показывающие и регистрирующие приборы Диск – 250 - 250И- 250ДД- 250П - 250ТН | Аналоговый показывающий и регистрирующий прибор КСД - 250 |
Дата добавления: 2021-02-19; просмотров: 607;