СТРУКТУРА БАКТЕРИАЛЬНОЙ КЛЕТКИ
Бактерии— одноклеточные организмы, имеющие довольно сложную структуру, отвечающую многообразию их функциональной деятельности (рис. 5). Бактериальная клетка обладает рядом принципиальных особенностей, касающихся ее ультраструктурной и химической организации.
Структуры, расположенные снаружи от ЦПМ (КС, капсула, слизистый чехол, жгутики, пили), называют поверхностными структурами.
Оболочка микробной клетки состоит из трех слоев: капсульного слоя, КС и ЦПМ. ЦПМ вместе с ЦП называется протопластом. ЦПМ имеет инвагинации — мезосомы — аналог митохондрий эукариот. В ЦП располагаются нуклеоид, плазмиды, рибосомы и включения. В неблагоприятных условиях среды некоторые бактерии образуют эндоспоры.
Обязательными органеллами бактериальной клетки являются нуклеоид, ЦПМ, мезосомы, ЦП, рибосомы.
Факультативные органеллыбактериальной клетки — капсула, КС,плазмиды, цитоплазматические включения, жгутики, пили, эндоспоры.
Рис.5. Схема строения прокариотической клетки
КАПСУЛА
Строение.Капсула имеется у некоторых бактерий и является поверхностным слизистым образованием, располагающимся снаружи КС. Капсулы являются результатом биосинтеза бактериями органических полимеров и отложения их вокруг клеток. В зависимости от степени выраженности капсулы подразделяют на макрокапсулы, микрокапсулы и слизистые слои (чехлы). Между этими структурами обнаружено много переходных форм, так что иногда нельзя четко отграничивать капсулу от слизистых клеточных выделений или капсулу от чехла.
Макрокапсула(истинная капсула) имеется у некоторых бактерий. Это выраженный слизистый слой, имеющий фибриллярное строение, толщиной больше 0,2 мкм, превышающий диаметр бактериальной клетки, с четко очерченными внешними границами и прочной связью с КС. Макрокапсулу можно видеть в обычный световой микроскоп.
Химический состав капсул родо- или видоспецифичен. Основными компонентами макрокапсул являются вода и полимеры, обычно полисахариды (у S. mutans, S. salivarius, Corynebacterium). Экзополисахариды образуются при действии внеклеточных ферментов микроорганизмов на дисахариды; конечными продуктами ферментации являются декстраны и леваны, обеспечивающие прилипание бактерий к разным поверхностям, часто гладким. Состав большинства экзополисахаридов независим от используемого субстрата. Особенно обильное образование слизи наблюдается у микроорганизмов в среде, содержащей сахарозу. Стрептококки, вызывающие кариес (особенно S. mutans и S. salivarius), выделяют фермент гексозилтрансферазу, превращающую сахарозу в полифруктозы (леваны). Эти полисахариды откладываются на поверхности зубов и служат матриксом, в котором накапливаются кислые продукты брожения (главным образом, молочная кислота), вызывающие деминерализацию зубной эмали и кариес. Реже (у представителей рода Bacillus, Y. pestis) макрокапсула имеет полипептидную природу.
Капсула — необязательный структурный компонент бактериальной клетки. Наличие капсулы зависит от штамма микроорганизма и условий его существования. Бактерии, образующие капсулу, могут легко превращаться в бескапсульные формы.
Макрокапсулу, как правило, образуют немногие виды патогенных бактерий при неблагоприятных условиях (в макроорганизме) и утрачивают ее при пересевах: S. pneumoniae (возбудитель крупозной пневмонии), B. anthracis (возбудитель сибирской язвы), C. perfringens (возбудитель газовой гангрены), F. tularensis (некоторые штаммы возбудителя туляремии), Y. pestis (возбудитель чумы).
В то же время, некоторые бактерии образуют капсулу постоянно, независимо от условий существования (и в макроорганизме, и на питательных средах): K. pneumoniae (возбудитель пневмонии), K. rhinoscleromatis (возбудитель склеромы), K. ozaenae (возбудитель озены — зловонного насморка).
Если толщина тесно прилегающего к КС слизистого образования меньше 0,2 мкм, т. е. не превышает диаметра бактериальной клетки, — говорят о микрокапсуле, состоящейиз мукополисахаридных фибрилл. Микрокапсула имеется у многих бактерий, ее можно наблюдать лишь при электронной микроскопии.
Если слизистое вещество имеет аморфный, бесструктурный вид, легко отделяется от поверхности бактериальной клетки, не имеет четких внешних границ, говорят о слизистых слоях (чехлах), окружающих клетку. Чехлы состоят из мукополисахаридов, имеют тонкую структуру, нередко в них обнаруживают несколько слоев с разным строением.
Функции капсулы:
1. Играет защитную роль во внешней среде: предохраняет бактерии от механических повреждений, высыхания, создает дополнительный осмотический барьер, так как гидрофильна и хорошо связывает воду.
2. Является источником запасных питательных веществ.
3. Выполняет адгезивную функцию: обеспечивает прикрепление бактерий к различным поверхностям, в т. ч. к рецепторам клетки хозяина.
4. Является фактором патогенности: подавляет различные этапы фагоцитарной реакции (переваривание, а иногда даже распознавание и поглощение). Фагоцитоз капсульных бактерий незавершенный, бактерии сохраняются (персистируют) в фагоцитах, иногда даже размножаются в них. При этом капсульные бактерии (напр., клебсиеллы, гонококки, золотистый стафилококк) недоступны для действия антител и комплемента, а также антибиотиков, непроникающих в клетку.
5. Препятствует действию бактериофагов.
6. Определяет антигенную специфичность, это К–антиген. У некоторых бактерий (пневмококков) — определяет вирулентность.
7. Бактериальные полисахариды применяются в медицине:
– молочнокислая бактерия Leuconostoc mesenteroides за несколько часов превращает раствор в студень — декстран, который используют для повышения вязкости водных растворов, 6%-ный раствор декстрана — кровезаменитель полиглюкин;
– препарат из декстрана — сефадекс — применяется в хроматографии в качестве «молекулярного сита» для разделения веществ с большой молекулярной массой.
Выявление капсулы:
1. При обычных методах окраски капсулы видны плохо — как неокрашенный ореол вокруг бактериальной клетки. Для их выявления лучше использовать негативное контрастирование: добавление таких красителей, которые в капсулу не проникают (тушь, нигрозин, конго красный).
Наиболее распространен метод Бурри—Гинса:
– каплю китайской микрозернистой туши и петлю исследуемого материала смешивают, готовят мазок при помощи стекла со шлифованным краем (как тонкий мазок крови), высушивают;
– фиксируют химически или физически;
– окрашивают водным фуксином 3-5 мин;
– промывают водой, высушивают, микроскопируют с масляной иммерсией: фон черный (тушевой), бактерии красные, капсулы неокрашенные (рис. 6).
Рис.6. Окраска по Бурри—Гинсу |
2. В серологических реакциях с противокапсульными сыворотками.
3. При помощи реакции набухания капсулы Нейфельда: при добавлении гомологичных антисывороток капсулы становятся видимыми вследствие отложения белка антител.
4. Электронная микроскопия: капсула визуализируется в виде микрофибрилл из мукополисахаридов, которые тесно прилегают к КС.
Методы 2–4 позволяют выявлять микрокапсулу, которая не обнаруживается методом 1.
ЖГУТИКИ
Строение.Около половины известных видов бактерий на поверхности имеют органы движения — волнообразно изогнутые жгутики. Масса жгутиков составляет до 2 % сухой массы бактерии. Длина жгутика больше длины тела микроорганизма и составляет 3–12 мкм; толщина жгутика 0,02 мкм, причем полярные жгутики более толстые, чем перитрихиальные.
Жгутики состоят из белка флагеллина (лат. flagella — жгутик), который по своей структуре относится к сократительным белкам типа миозина. В составе жгутика имеется либо одна гомогенная белковая нить, либо 2–3 нити, плотно свернутые в косу. Нить жгутика — жесткая спираль, закрученная против часовой стрелки; шаг спирали специфичен для каждого вида бактерий.
Число, размеры и расположение жгутиков являются признаками, постоянными для определенного вида, и учитываются при систематике. Однако у некоторых бактерий могут образовываться жгутики разных типов. Кроме того, наличие жгутиков зависит от условий внешней среды: на твердых средах при длительном культивировании бактерии могут утратить жгутики, а на жидких — вновь приобрести. Количество и расположение жгутиков у одного и того же вида может определяться стадией жизненного цикла. Следовательно, не стоит переоценивать таксономическое значение этого признака.
Классификация бактерий по числу и расположению жгутиков:
1. Атрихи— жгутики отсутствуют.
2. Монотрихи — один жгутик, расположенный на одном из полюсов клетки (род Vibrio) — монополярное монотрихальное расположение жгутиков, самые подвижные бактерии.
3. Политрихи — много жгутиков:
– лофотрихи— пучок жгутиков на одном полюсе клетки(роды Pseudomonas, Burkholderia)—монополярное политрихальное расположение жгутиков;
– амфитрихи — на каждом полюсе клетки расположено по пучку жгутику (род Spirillum) — биполярное политрихальное расположение жгутиков;
– перитрихи — жгутики расположены без определенного порядка по всей поверхности клетки (сем. Enterobacteriaceae (роды Escherichia, Proteus), сем. Bacillaceae, сем. Clostidiaceae), число жгутиков от 6 до 1000 на клетку в зависимости от вида бактерий (рис. 7).
Рис.7. Варианты расположения жгутиков у бактерий:
1 — монотрих, 2 — лофотрих;
3 — амфитрих; 4 — перитрих.
– При электронной микроскопии обнаружено, что жгутик состоит из трех частей:спиральной нити, крюка и базального тела (рис. 8).
Основную часть жгутика составляет длинная спиральная нить (фибрилла) — жесткий полый цилиндр диаметром около 120 нм, состоящий из белка флагеллина. По длине нити белковые молекулы образуют 11 рядов и уложены в виде спирали. В процессе роста нити белковые молекулы, синтезированные внутри клетки, проходят через полость цилиндра и пристраиваются в спираль на ее конце. На конце жгутика имеется белковая шапочка (крышечка), закрывающая отверстие цилиндра и препятствующая выходу молекул белка в окружающую среду. Длина нити жгутика может достигать нескольких микрометров. У некоторых видов бактерий жгутик снаружи дополнительно покрыт чехлом. У поверхности КС спиральная нить переходит в утолщенную изогнутую структуру — крюк.
Рис. 8. Схема строения жгутика
2. Крюк (толщиной 20–45 нм) вблизи поверхности клетки — относительно короткий цилиндр, состоит из белка, отличающегося от флагеллина, и служит для обеспечения гибкого соединения нити с базальным телом.
3. Базальное тело находится в основании жгутика и обеспечивает его вращение. Базальное тело содержит 9–12 различных белков и состоит из двух или четырех дисков (колец), нанизанных на стержень, являющийся продолжением крюка. Эти кольца вмонтированы в ЦПМ и КС. Два внутренних кольца (M и S) — обязательные составные части базального тела. M-кольцо локализовано в ЦПМ, S-кольцо располагается в периплазматическом пространстве грамотрицательных или в пептидогликановом мешке грамположительных бактерий. Два наружных кольца (D и L) необязательны для движения, так как имеются только у грамотрицательных бактерий, локализованы соответственно в пептидогликановом слое и в наружной мембране КС. Кольца S, D и L неподвижны и служат для фиксации жгутика в КС. Вращение жгутика определяется вращением M–кольца, встроенного в ЦПМ клетки. Таким образом, особенности строения базального тела жгутика определяются строением КС.
Функционально базальное тело представляет собой электромотор, работающий на протонах. М–кольцо базального тела (вращающийся ротор), окружено мембранными белками, имеющими отрицательные заряды (статор мотора). Бактериальная клетка обладает эффективным механизмом, позволяющим превращать электрохимическую энергию в механическую. Поэтому на работу жгутика бактерия тратит около 0,1 % всей расходуемой ею энергии. При работе жгутика используется протондвижущая сила, которая обеспечивается разностью концентраций протонов на внешней и внутренней сторонах мембраны (на внешней стороне их больше) и наличием более отрицательного заряда на внутренней стороне мембраны. Протондвижущая сила заставляет протоны проходить через базальное тело внутрь клетки, при этом они задерживаются на определенных участках ротора, придавая им положительный заряд, затем протоны уходят внутрь клетки. Заряженные участки расположены таким образом, что возникает сила притяжения между заряженными участками ротора и статора, М-кольцо начинает вращаться со скоростью около 300 об/c. Механизм вращения: зарядка–перезарядка группы COOH в аминокислотах. Для полного оборота кольца через базальное тело должно пройти 500–1000 протонов. Вращение М-кольца через жестко связанную с ним ось и крюк передается нити жгутика, которая функционирует как пропеллер или корабельный винт. Бактерия плывет до тех пор, пока работает винт, вклад инерции исключительно мал.
Кроме того, бактерии, даже мертвые, находящиеся в водной среде, перемещаются в результате броуновского движения. Бактериальная клетка все время подвержена ударам окружающих молекул, находящихся в тепловом движении. Удары, наносимые с разных сторон, бросают бактерию из стороны в сторону.
Тип движения жгутиков — вращательный. Существуют два вида движения: прямолинейное и кувыркание (периодические случайные изменения направления движения). Когда жгутики вращаются против хода часовой стрелки (около 1 секунды), с частотой 40–60 об./с (близко к скорости среднего электромотора), их нити сплетаются в единый жгут (рис. 9а). Вращение жгутиков передается клетке. Так как клетка намного массивнее жгутика, она начинает двигаться по прямой в противоположном направлении, со скоростью в 3 раза меньшей, чем скорость движения жгутика.
Так обеспечивается поступательное движение клетки, скорость которого в жидкой среде для разных видов бактерий составляет 20–200 мкм/с (это соответствует примерно 300–3000 длин тела в минуту) и более медленное перемещение по поверхности твердых сред.
Рис. 9. Расположение жгутиков на клетке кишечной палочки при их вращении: А — против часовой стрелки, Б — по часовой стрелке |
Плыть целенаправленно в одном направлении бактерия может не более 3 с, затем удары окружающих молекул разворачивают ее в случайном направлении. Поэтому бактерии выработали механизм спонтанного изменения направления движения — переключение жгутикового мотора. Когда он начинает вращаться по ходу часовой стрелки (около 0,1 с), бактерия останавливается и переворачивается (совершает «кувырок») в случайном направлении. При этом жгутики разлетаются в разные стороны (рис. 9б). У амфитрихов при движении один пучок жгутиков вывернут наизнанку (подобно вывернутому ветром зонту). Затем мотор снова переходит к вращению против часовой стрелки, и бактерия опять плывет по прямой, но уже в другом, случайном направлении.
Жгутики могут также изменять направление движения в ответ на внешний стимул. Если бактерия перемещается в сторону оптимальной концентрации аттрактанта, жгутики проталкивают клетку через среду, ее прямолинейное движение становится более длительным, а частота кувырканий более низкой, что позволяет ей в конечном итоге перемещаться в нужном направлении.
Известны случаи существования бездействующих (парализованных) жгутиков. Для движения жгутиковых бактерий необходима интактность (неповрежденность) КС. Обработка клеток лизоцимом, приводящая к удалению пептидогликанового слоя КС, вызывает потерю способности бактерий к движению, хотя жгутики остаются при этом неповрежденными.
Таксисы бактерий. Пока окружающая среда остается неизменной, бактерии плавают беспорядочно. Однако совершенно однородной окружающая среда бывает редко. Если среда неоднородна, бактерии проявляют элементарные поведенческие реакции: активно перемещаются в направлении, определяемом теми или иными внешними факторами. Такие генетически детерминированные целенаправленные перемещения бактерий называют таксисами. В зависимости от фактора различают хемотаксис (частный случай — аэротаксис), фототаксис, магнитотаксис, термотаксис и вискозитаксис.
Хемотаксис — движение в определенном направлении относительно источника химического вещества. Химические вещества делят на две группы: инертные и вызывающие таксисы — хемоэффекторы. Среди хемоэффекторов есть вещества, привлекающие бактерий, — аттрактанты (сахара, аминокислоты, витамины, нуклеотиды), и вещества, их отпугивающие, — репелленты (некоторые аминокислоты, спирты, фенолы, неорганические ионы). Аттрактантом для аэробных и репеллентом для анаэробных прокариот является молекулярный кислород. Аттрактанты часто представлены пищевыми субстратами, хотя не все вещества, необходимые для организма, выступают в качестве аттрактантов. Также не все ядовитые вещества служат репеллентами и не все репелленты вредны. Таким образом, бактерии способны реагировать не на любые соединения, а только на определенные и различные для разных бактерий.
В поверхностных структурах бактериальной клетки есть специальные белковые молекулы — рецепторы, специфически соединяющиеся с определенным хемоэффектором, при этом молекула хемоэффектора не изменяется, а в молекуле рецептора происходят конформационные изменения. Рецепторы расположены неравномерно по всей поверхности клетки, а сконцентрированы на одном из полюсов. Состояние рецептора отражает внеклеточную концентрацию соответствующего эффектора.
Хемотаксис имеет приспособительное значение. Например, формы холерного вибриона с нарушенным хемотаксисом оказываются менее вирулентными.
Аэротаксис — нуждающиеся в молекулярном кислороде бактерии скапливаются вокруг пузырьков воздуха, попавших под покровное стекло.
Фототаксис— движение к свету или от него, свойствен фототрофным бактериям, использующим свет в качестве источника энергии.
Магнитотаксис — способность водных бактерий, содержащих кристаллики железосодержащих минералов, плыть вдоль линий магнитного поля Земли.
Термотаксис — движение в сторону изменения температуры, что имеет большое значение для некоторых патогенных бактерий.
Вискозитаксис— способность реагировать на изменение вязкости раствора. Обычно бактерии стремятся в среду с большей вязкостью, что имеет большое значение для патогенных видов.
Скольжение бактерий. Способность к скольжению с небольшой скоростью (2–11 мкм/с) по твердому или вязкому субстрату обнаружена у некоторых прокариот, напр., микоплазм.
Существуют несколько гипотез, объясняющих скользящее движение. Согласно гипотезе реактивного движения оно обусловлено выделением слизи через многочисленные слизевые поры в КС, в результате чего клетка отталкивается от субстрата в направлении, противоположном направлению выделения слизи. Согласно гипотезе «бегущей волны» скользящее движение у подвижных безжгутиковых форм связано с наличием между пептидогликановым слоем и наружной мембраной КС тонкого белкового слоя из упорядоченно расположенных фибрилл, аналогичных нитям жгутиков. Вращательное движение фибрилл, «запускаемое» этими структурами, приводит к появлению на поверхности клетки «бегущей волны» (движущихся микроскопических выпуклостей КС), в результате чего клетка отталкивается от субстрата. Наконец, у некоторых скользящих бактерий описаны структуры, напоминающие базальные тела жгутиковых форм.
Функции жгутиков:
1. Обеспечивают адгезию — начальную стадию инфекционного процесса.
2. Обеспечивают подвижность бактерий.
3. Определяют антигенную специфичность, это Н-антиген.
Выявление жгутиков:
1. Фазовоконтрастная микроскопия нативных препаратов («раздавленной» и «висячей» капли). Микроскопически подвижность определяют у клеток суточной культуры. Для того чтобы отличить подвижность от пассивного броуновского движения, к капле исследуемой культуры добавляют каплю 5 %–ного водного раствора фенола, активное движение в этом случае прекращается.
2. Темнопольная микроскопия нативных препаратов.
3. Световая микроскопия окрашенных красителями или металлами препаратов. Так как жгутики очень легко повреждаются при приготовлении препарата, в повседневной практике эти методы используется редко.
Для окраски жгутиков используют клетки, выращенные на скошенном агаре. Бактериальной петлей отбирают клетки, находящиеся у конденсационной воды и осторожно переносят в стерильную дистиллированную воду такой же температуры, что и температура инкубирования бактерий на скошенном агаре, а бактерии с петли не стряхивают, а осторожно погружают в воду. Пробирку с бактериями оставляют при комнатной температуре на 30 мин. Используют химически чистое (вымытое в хромовой смеси) стекло, на которое наносят 2–3 капли суспензии. Суспензию распределяют по поверхности стекла, осторожно его наклоняя. Высушивают препарат на воздухе.
Жгутики очень тонкие, поэтому их можно обнаружить только при специальной обработке. Вначале при помощи протравки достигается разбухание и увеличение их размера, а затем производится окраска препарата, благодаря чему они становятся видимыми при световой микроскопии.
Чаще используют метод серебрения по Морозову (рис. 10):
– препарат фиксируют раствором ледяной уксусной кислоты 1 минуту, промывают водой;
– наносят раствор таннина (дубящий, делающий жгутики более плотными) на 1 мин, промывают водой;
– обрабатывают препарат при подогревании импрегнирующим раствором азотнокислого серебра 1–2 мин, промывают водой, высушивают и микроскопируют.
При микроскопии видны темно-коричневые клетки и более светлые жгутики.
Рис. 10. Выявление жгутиков методом серебрения
Рис. 11. Выявление жгутиков
методом электронной микроскопии
4. Электронная микроскопия препаратов, напыленных тяжелыми металлами (рис. 11).
5. Косвенно — по характеру роста бактерий при посеве в полужидкий 0,3 %–ный агар. После инкубирования посевов в термостате в течение 1–2 сут отмечают характер роста бактерий:
– у неподвижных бактерий (напр., S. saprophyticus) наблюдается рост по ходу укола — «гвоздь», а среда прозрачна;
– у подвижных бактерий (напр., Е. со1i)наблюдается рост в стороны от укола, по всему столбику агара — «елочка», и диффузное помутнение среды.
ФИМБРИИ (ПИЛИ)
Строение.К поверхностным структурам бактериальной клетки относятся также фимбрии (син.: пили, реснички, ворсинки) — жесткие прямые полые нити из белка пилина, локализованые на КС. Фимбрии короче и тоньше жгутиков: их диаметр 3–20 нм, длина 0,2–10,0 мкм.
Фимбрии — необязательная клеточная структура, так как и без них бактерии хорошо растут и размножаются. В отличие от жгутиков, фимбрии не выполняют двигательную функцию и обнаружены у подвижных и неподвижных форм. По своему функциональному назначению фимбрии подразделяются на 2 типа. Термин «фимбрии» чаще используется для обозначения общих пили, а термин «пили» — для обозначения секс-пили.
Фимбрии 1 (общего) типа имеются у большинства бактерий. Они покрывают всю поверхность клетки, располагаются перитрихиально или полярно. Количество фимбрий велико — от нескольких сотен до нескольких тысяч на одну бактериальную клетку. Синтез фимбрий контролируется бактериальной хромосомой, утрата фимбрий приводит к их новому синтезу.
Покрывая всю клетку, фимбрии создают ворсистую поверхность (рис. 12, 13). Иногда фимбрии сливаются в комки, придавая неопрятный вид клетке; в других случаях поверхность клеток покрыта войлокообразным чехлом, состоящим из сплетений тонких нитей.
Рис. 12. Палочковидная бактерия с фимбриями. Увел. x 15 000
Рис. 13. Кокки с фимбриями.
Увел. x 12000
Пили 2 типа (синонимы: конъюгативные, половые, секс-пили)образуются только мужскими клетками-донорами, содержащими трансмиссивные плазмиды (F, R, Col), в ограниченном количестве (1–4 на клетку), имеют терминальные вздутия.
Функции фимбрий:
Фимбрии обоих типов:
1. Обладают антигенной активностью.
2. На них адсорбируются бактериофаги (специфические вирусы бактерий).
Фимбрии 1 типа:
3. Адгезивная функция: обеспечивают прикрепление бактерий к клеткам слизистых оболочек организма хозяина и к другим субстратам (клеткам растений, грибов, неорганическим частицам и органическим остаткам).
4. Механическая защита бактериальной клетки. Придают бактериям свойство гидрофобности и способствуют объединению клеток в группы.
5. Увеличивают всасывательную поверхность клетки бактерий, участвуют в процессах питания, водно-солевого обмена и в транспорте метаболитов.
Половые пили:
6. F–пили обеспечивают конъюгацию — передачу части генетического материала от донорской клетки к реципиентной.
Выявление фимбрий:
1. Электронная микроскопия.
Дата добавления: 2021-02-19; просмотров: 1148;