Равномощные множества
Определение. Множества Х и У называются равномощными, если между ними можно установить взаимно однозначное соответствие.
Если множества Х и У равномощны, то пишут Х ~ У.
Нетрудно видеть, что множества рассмотренные в предыдущих примерах равномощны.
Равномощными могут быть как конечные, так и бесконечные множестваРавномощные конечные множества называют еще равночисленными. В начальном обучении математике равночисленность выражается словами «столько же» и может использоваться при ознакомлении учащихся со многими понятиями. Например, чтобы ввести равенство чисел, сравнивают два множества, устанавливая между их элементами взаимно однозначное соответствие. Например, пишут, что 5 = 5, так как кружков столько же, сколько квадратов.
Понятие равночисленности множеств лежит и в основе определения отношений «больше на …» и «меньше на…» . Например, чтобы утверждать, что 6 больше 4 на 2, сравнивают два множества, устанавливая взаимно однозначное соответствие между множеством Х, в котором 4 элемента, и подмножеством У1 другого множества У, в котором 6 элементов, и делают вывод: треугольников столько же, сколько кружков, и еще 2. Другими словами, треугольников на 2 больше, чем кружков.
Х
У1
У
Как уже было сказано, равномощными могут быть и бесконечные множества.
Пример
Пусть Х – множество точек отрезка АВ, У – множество точек отрезка СD, причем длины отрезков различны. Так как между данными множествами можно установить взаимно однозначное соответствие, то множества точек АВ и СD равномощны.
N
A M B
С M’ D
Пример
Рассмотрим множество N натуральных чисел и множество У – четных натуральных чисел. Они равномощны, так как между их элементами можно установить взаимно однозначное соответствие:
N: 1 2 3 … п …
У: 2 4 6 … 2п …
Замечание.На первый взгляд кажется парадоксальным тот факт, что можно установить взаимно однозначные соответствия между множеством и его частью: для конечных множеств такая ситуация невозможна. Однако в математике доказано, что для бесконечного множества А всегда найдется такое его подмножество В, что между А и В можно установить взаимно однозначноесоответствие. Иногда это утверждение считают определением бесконечного множества.
Определение.Если бесконечное множество равномощно множеству N натуральных чисел, его считают счетным.
Любое бесконечное подмножество множества N счетно: чтобы пронумеровать его элементы, надо расположить элементы подмножества в порядке возрастание и нумеровать один за другим. Так, счетно множество всех нечетных натуральных чисел, множество натуральных чисел, кратных 5 и др. Счетными являются также множества всех целых чисел, всех рациональных.
Существуют ли множества, отличные от счетных? Доказано, что бесконечным множеством, не равномощным множеству N натуральных чисел, является множество R всех действительных чисел.
Дата добавления: 2021-01-26; просмотров: 471;