Уравнения с одной переменной


Возьмем два выражения с переменной: 4 х и 5 х + 2. Соединив их знаком равенства, получим предложение 4х = 5 х + 2. Оно содержит переменную и при подстановке значений переменной обращается в вы­сказывание. Например, при х = -2 предложение 4х = 5 х + 2 обращается в истинное числовое равенство 4 ·(-2) = 5 ·(-2) + 2, а при х = 1 - в лож­ное 4·1 = 5·1 + 2. Поэтому предложение 4х = 5х + 2 есть высказывательная форма. Ее называют уравнением с одной переменной.

В общем виде уравнение с одной переменной можно определить так:

Определение. Пусть f(х) и g(х) - два выражения с переменной х и областью определения X. Тогда высказывательная форма вида f(х) =g(х) называется уравнением с одной переменной.

Значение переменной х из множества X, при котором уравнение обращается в истинное числовое равенство, называется корнем урав­нения (или его решением). Решить уравнение - это значит найти мно­жество его корней.

Так, корнем уравнения 4х = 5х + 2, если рассматривать его на мно­жестве R действительных чисел, является число -2. Других корней это уравнение не имеет. Значит множество его корней есть {-2}.

Пусть на множестве действительных чисел задано уравнение (х - 1)(х + 2) = 0. Оно имеет два корня - числа 1 и -2. Следовательно, множество корней данного уравнения таково: {-2,-1}.

Уравнение (3х + 1)-2 = 6 х + 2, заданное на множестве действи­тельных чисел, обращается в истинное числовое равенство при всех действительных значениях переменной х: если раскрыть скобки в левой части, то получим 6х + 2 = 6х + 2. В этом случае говорят, что его корнем является любое действительное число, а множеством корней множество всех действительных чисел.

Уравнение (3х + 1)·2 = 6 х + 1, заданное на множестве действи­тельных чисел, не обращается в истинное числовое равенство ни при одном действительном значении х: после раскрытия скобок в левой части получаем, что 6 х + 2 = 6х + 1, что невозможно ни при одном х. В этом случае говорят, что данное уравнение не имеет корней и что множество его корней пусто.

Чтобы решить какое-либо уравнение, его сначала преобразовыва­ют, заменяя другим, более простым; полученное уравнение опять пре­образовывают, заменяя более простым, и т.д. Этот процесс продол­жают до тех пор, пока не получают уравнение, корни которого можно найти известным способом. Но чтобы эти корни были корнями за­данного уравнения, необходимо, чтобы в процессе преобразований получились уравнения, множества корней которых совпадают. Такие уравнения называют равносильными.

 

Определение. Два уравнения f1(х) = g1(х) и f2(х) = g2(х) называют­ся равносильными, если множества их корней совпадают.

Например, уравнения х2 - 9 = 0 и (2 х + 6)( х - 3) = 0 равносильны, так как оба имеют своими корнями числа 3 и -3. Равносильны и урав­нения (3х + 1)-2 = х2- + 1 и х2 + 1 = 0, так как оба не имеют корней, т.е. множества их корней совпадают.

Определение. Замена уравнения равносильным ему уравнением на­зывается равносильным преобразованием.

Выясним теперь, какие преобразования позволяют получать рав­носильные уравнения.

Теорема 1.Пусть уравнение f(х) и g(х)задано на множестве и h(x) - выражение, определенное на том же множестве. Тогда уравнения f(х) = g(х) (1)и f(х) + h(x) = g(х) + h(x) (2) равносильны.

Доказательство. Обозначим через Т1 - множество решений уравнения (1), а через Т2 - множество решений уравнения (2). Тогда уравнения (1) и (2) будут равносильны, если Т1 = Т2. Чтобы убедиться в этом, необходимо показать, что любой корень из Т1 является корнем уравнения (2) и, наоборот, любой корень из Т2 является корнем урав­нения (1).

Пусть число а - корень уравнения (1). Тогда a ? Т1, и при подста­новке в уравнение (1) обращает его в истинное числовое равенство f(a) = g(a), а выражение h(х) обращает в числовое выражение h(a), имеющее смысл на множестве X. Прибавим к обеим частям истинно­го равенства f(a) = g(a) числовое выражение h(a). Получим, согласно свойствам истинных числовых равенств, истинное числовое равенст­во f(a) + h(a) = g(a) + h(a), которое свидетельствует о том, что число а является корнем уравнения (2).

Итак, доказано, что каждый корень уравнения (1) является корнем и уравнения (2), т.е. Т1 с T2.

Пусть теперь а - корень уравнения (2). Тогда а ? T2 и при подста­новке в уравнение (2) обращает его в истинное числовое равенство f(a) + h(a) = g(a) + h(a). Прибавим к обеим частям этого равенства чис­ловое выражение -h(a), Получим истинное числовое равенство f(х) = g(х), которое свидетельствует о том, что число а - корень уравнения (1).

Итак, доказано, что каждый корень уравнения (2) является и кор­нем уравнения (1), т.е. T2 с Т1.

Так как Т1 с Т2 и Т2 с Т1, то по определению равных множеств Т1 = Т2, а значит, уравнения (1) и (2) равносильны.

Данную теорему можно сформулировать иначе: если к обеим частям уравнения с областью определения X прибавить одно и то же выраже­ние с переменной, определенное на том же множестве, то получим новое уравнение, равносильное данному.

Из этой теоремы вытекают следствия, которые используются при решении уравнений:

1.Если к обеим частям уравнения прибавить одно и то лее число, то получим уравнение, равносильное данному.

2.Если какое-либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части уравнения в другую, поменяв знак слагаемого на противоположный, то получим уравнение, равносильное данному.

Теорема 2. Пусть уравнение f(х) = g(х) задано на множестве X и h(х) - выражение, которое определено на том же множестве и не об­ращается в нуль ни при каких значениях х из множества X. Тогда уравнения f(х) = g(х) и f(х) · h(x) = g(х) · h(x) равносильны.

Доказательство этой теоремы аналогично доказательству теоремы 1.

Теорему 2 можно сформулировать иначе: если обе части уравнения с областью определения X умножить на одно и то же выражение, кото­рое определено на том же множестве и не обращается на нем в нуль, то получим новое уравнение, равносильное данному.

 

Решим уравнение 1- x/3 = x/6, x ? R и обоснуем все преобразования, которые мы будем выполнять в процессе решения.

Преобразования Обоснование преобразования
1. Приведем выражения, стоящие в левой и правой частях уравнения, к общему знаменателю: (6-2х)/ 6 = х/6 Выполнили тождественное преобразование выражения в левой части уравнения.
2. Отбросим общий знаменатель: 6-2х = х Умножили на 6 обе части уравнения (теорема 2), получили уравнение, равносильное данному.
3. Выражение -2х переносим в правую часть уравнения с проти­воположным знаком: 6 = х+2х. Воспользовались следствием из теоремы 1, получили уравнение, равносильное предыдущему и, значит, данному.
4. Приводим подобные члены в правой части уравнения: 6 = 3х. Выполнили тождественное пре­образование выражения.
5. Разделим обе части уравнения на 3: х = 2. Воспользовались следствием из теоремы 2, получили уравнение, равносильное предыдущему, а значит, и данному

 

Так как все преобразования, которые мы выполняли, решая данное уравнение, были равносильными, то можно утверждать, что 2 - ко­рень этого уравнения.

Если же в процессе решения уравнения не выполняются условия теорем 1 и 2, то может произойти потеря корней или могут появиться посторонние корни. Поэтому важно, осуществляя преобразования уравнения с целью получения более простого, следить за тем, чтобы они приводили к уравнению, равносильному данному.

Рассмотрим, например, уравнение х(х - 1) = 2х, х ? R. Разделим обе части на х, получим уравнение х - 1 = 2, откуда х = 3, т. е. данное уравнение имеет единственный корень - число 3. Но верно ли это? Не­трудно видеть, что если в данное уравнение вместо переменной х подставить 0, оно обратится в истинное числовое равенство 0·(0 - 1) = 2·0. А это означает, что 0 - корень данного уравнения, который мы поте­ряли, выполняя преобразования. Проанализируем их. Первое, что мы сделали, - это разделили обе части уравнения на х, т.е. умножили на выражение1/x , но при х = О оно не имеет смысла. Следовательно, мы не выполнили условие теоремы 2, что и привело к потере корня.

Чтобы убедиться в том, что множество корней данного уравне­ния состоит из двух чисел 0 и 3, приведем другое его решение. Пере­несем выражение 2х из правой части в левую: х(х - 1) - 2х = 0. Выне­сем в левой части уравнения за скобки х и приведем подобные члены: х(х - 3) = 0. Произведение двух множителей равно нулю в том и толь­ко в том случае, когда хотя бы один из них равен нулю, поэтому x= 0 или х - 3 = 0. Отсюда получаем, что корни данного уравнения - 0 и 3.

В начальном курсе математики теоретической основой решения уравнений является взаимосвязь между компонентами и результатами действий. Например, решение уравнения (х·9):24 = 3 обосновывается следующим образом. Так как неизвестное находится в делимом, то, чтобы найти делимое, надо делитель умножить на частное: х ·9 = 24·3, или х·9 = 72.

Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель: х = 72:9, или х = 8, следовательно, корнем данного уравнения является число 8.

 

План:

1. Понятие неравенства с одной переменной

2. Равносильные неравенства. Теоремы о равносильности неравенств

3. Решение неравенств с одной переменной

4. Графическое решение неравенств с одной переменной

5. Неравенства, содержащие переменную под знаком модуля



Дата добавления: 2021-01-26; просмотров: 376;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.013 сек.