Решение неравенств с одной переменной


Решим неравенство 5х - 5 < 2х - 16, х ? R, и обоснуем все преоб­разования, которые мы будем выполнять в процессе решения.

Преобразования Обоснование преобразования
1. Приведем выражении 2x в левую часть, а число -5 в правую, поменяв их знаки на противоположные: 5x-2x < 16+5 Воспользовались следствием 2 из теоремы 3, получили неравенство, равносильное данному
2. Приведем подобные члены в левой и правой частях неравенства: 3х< 21 Выполнили тождественные преобразования выражений в левой и правой частях неравенства - они не нарушили равносильности неравенств: данного и исходного.
3. Разделим обе части неравенст­ва на 3: х<7. Воспользовались следствием из теоремы 4, получили неравенство, равносильное исходному

 

Решением неравенства х < 7 является промежуток (-∞, 7) и, сле­довательно, множеством решений неравенства 5х - 5 < 2х + 16 яв­ляется промежуток (-∞, 7).

ГРАФИЧЕСКОЕ РЕШЕНИЕ НЕРАВЕНСТВ С ОДНОЙ ПЕРЕМЕН­НОЙ.Для графического решения неравенства f (х) > g (х) нужно построить гра­фики функций

у = f (х) = g (х) и выбрать те проме­жутки оси абсцисс, на которых график функции у = f (х) расположен выше графика функции у = g (х).

Решите графически неравенство х2 - 4 > 3х.

У - х* - 4

Решение. Построим в одной системе координат графи­ки функций

у = х2- 4 и у = Зх (рис. 17.5). Из рисунка видно, что графики функций у = х2 - 4 расположен выше графика функции у = 3х при х < -1 и х > 4, т.е. множество решений исходного неравенства есть множество

(- ¥; -1) È (4; +оо).

Ответ: х Î (- оо; -1) и (4;+ оо ).

Графиком квадратичной функции у = ах2 + bх + с является парабола с ветвя­ми, направленными вверх, если а > 0, и вниз, если а < 0. При этом возможны три случая: парабола пересекает ось Ох (т.е. уравнение ах2 + + с = 0 имеет два различных корня); парабола касается оси х (т.е. уравнение ах2 + bх + с = 0 имеет один корень); парабола не пересекает ось Ох (т.е. уравнение ах2 + + с = 0 не имеет корней). Таким образом, возможны шесть положений параболы, служа­щей графиком функции у = ах2 + bх + с (рис. 17.6). Используя эти иллюстрации, можно решать квадратные неравенства.

НЕРАВЕНСТВА, СОДЕРЖАЩИЕ ПЕРЕМЕННУЮ ПОД ЗНАКОМ МОДУЛЯ.При решении данных неравенств следует иметь в виду, что:

| f(х) | =

f(х) , если f(х) ³ 0,

- f(х) , если f(х) < 0,

При этом область допустимых значений неравенства следует разбить на ин­тервалы, на каждом из которых выражения, стоящие под знаком модуля, сохра­няют знак. Затем, раскрывая модули (с учетом знаков выражений), нужно решать неравенство на каждом интервале и полученные решения объединять в множество решений исходного неравенства.

 

 

Практическое занятие / семинар 2: Текстовые задачи. Решение задач «на части», на движение, на работу.



Дата добавления: 2021-01-26; просмотров: 335;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.