Принцип наложения. Метод наложения


Принцип (теорема) наложения гласит, что ток в любой ветви (напряжение на любом элементе) сложной схемы, содержащей несколько источников, равен алгебраической сумме частичных токов (напряжений), возникающих в этой ветви (на этом элементе) от независи­мого действия каждого источника в от­дельности.

Для упрощения доказательства теоремы выберем одну из наружных вет­вей сложной схемы за номером 1, в которой действительный ток равен контур­ному: I1 = Ik1. Составим для сложной схемы систему контурных уравнений и решим ее относительно тока I1 = Ik1 методом определителей (Крамера):

Здесь G11 –входная проводимость ветви 1, G12, G13, …, G1n– взаимные проводимости между 1-й и остальными ветвями, I11 = E1G11 – частичный ток в ветви 1 от источника ЭДС E1, I12 = E2G12, …, I1n = EnG1n – частичные токи в ветви 1 от источников ЭДС E2,…, En.

Принцип наложения выполняется только для тех физических величин, которые опи­сываются линейными алгебраическими уравнениями, например, для токов и напряжений в линейных цепях. Принцип наложения не выполня­ется для мощности, которая с током связана нелинейным уравнением P=I2×R.

Принцип наложения лежит в основе метода расчета сложных цепей, по­лучившего на­звание метода наложения. Сущность этого метода состоит в том, что в сложной схеме с не­сколькими источниками последовательно рассчиты­ваются частичные токи от каждого источ­ника в отдельности. Расчет частичных токов выполняют, как правило, методом преобразова­ния схемы. Действитель­ные токи определяются путем алгебраического сложения частичных токов с учетом их направлений.

E1 E2
Пример.Задана схема цепи (рис. 21) и параметры ее элементов:E1 =12 B; E2 =9 B; R1= R2 =R3 = 2 Ом. Требуется определить токи в ветвях схемы методом наложения.

 


 


 

 

На рис. 22а представлена схема цепи для определения частичных токов от источника ЭДС Е1, а на рис. 22б - от источника ЭДС Е2.

 
 


 

Частичные токи в схеме рис. 22а от E1:

Ом; I11= E1/R11=12/3 = 4A; I21= I31= 2А.

Частичные токи в схеме рис. 22б от E2:

Ом; I22 = E2/R22 = 9/3 = 3A; I12= I32 = 1,5А.

Действительные токи как алгебраические суммы частичных токов:

I1 = I11 - I12 = 4 – 1,5 = 2,5 A

I2 = - I21 + I22 = -2 + 3 =1 A

I3 = I31+ I32 = 2 + 1,5 =3,5 A



Дата добавления: 2016-10-18; просмотров: 3744;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.