Синтез компенсационного регулятора тока


ДЧX неизменяемой части контура регулирования тока с учётом запаздывания имеет вид

. (5.47)

Стандартную форму желаемой ДЧX задаём в виде

С учётом необходимости получения астатизма первого порядка в регуляторе тока примем .

Контур тока является наиболее быстродействующим из всех контуров регулирования, поэтому для синтеза регулятора тока будем использовать табличные преобразования ДЧX в ДПФ [1].

По таблицам z– преобразования найдём ДПФ

(5.48)

где . Определим для N=1 выражение

(5.49)

Обозначим B1=(1-d0), B0=0, A3=1, A2=-d0, A1=0, A0= - (1-d0).

Определим это же выражение для N=2

.

Обозначим: B2=(1– d0), B1=0, B0=0, A3=1, A2= – d0, A1=0, A0= – (1–d0).

По таблицам z-преобразования найдём ДПФ неизменяемой части контура регулирования тока

, где .

Введём запись ДПФ неизменяемой части контура в общем виде

, (5.50)

где , , , .

ДПФ регулятора тока в общем виде представляется выражением

(5.51)

Подставляя выше найденные коэффициенты Ai и Bi, определим ДПФ регулятора тока:

для N=1 , (5.52)

для N=2 . (5.53)

Коэффициенты стандартной формы и рекомендуется принимать из условия , что обеспечивает частоту среза контура тока .

По сравнению с обычным цифровым ПИ – регулятором тока компенсационный регулятор обеспечивает желаемую форму переходного процесса (апериодическую) при сохранении или даже некотором увеличении полосы пропускания контура.



Дата добавления: 2021-01-11; просмотров: 336;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.