Ранжирование альтернатив на множестве лингвистических векторных оценок
Задано множество альтернатив A == {а1, а2, ..., аm} и множество соответствующих исходов S = [s1, s2, ..., sm,}. Каждый исход sj характеризуется альтернативой аi и вектором лингвистических оценок на множестве критериев К = [К1, К2, .... Кn}. Множество лингвистических векторных оценок исходов К = {K(s1), K(s2), ..., K(sm)} можно упорядочить, введя функцию принадлежности нечеткого отношения порядка m ³: К ´ К ® [0,1]. Для i-го критерия обозначим mi ³ (Ki(sj), Ki(sk)) через mi³ (sj , sk) Значение этой функции можно вычислить по фоомуле
Степень истинности m < (sj, sk) нечеткого высказывания sj < sk можно определить как вероятность того, что точное значение sj будет меньше точного значения sk. Предполагая, что исходы являются независимыми случайными величинами, отношение m < (sj, sk) можно представить в виде:
где vs(x) — вероятность того, что в качестве точного значения нечеткого числа s используется величина х;
ws(x) — вероятность того, что в качестве точного значения s используется величина у < х:
Векторные оценки могут быть упорядочены на основе функции принадлежности
где х — обозначает символ обобщенной операции.
Так как между множеством альтернатив и исходив существует взаимно однозначное соответствие, функцию принадлежности нечеткого отношения предпочтения на множестве альтернатив можно представить в виде:
Решение задачи с использованием данного метода включает следующие основные шаги:
• вычисление функций принадлежности m< с использованием соотношений (4.2);
• построение нечеткого отношения порядка m³;
• минимизация отношения m³;
• определение отношений предпочтения на множестве альтернатив и выявление лучшей альтернативы. Для этого вычисляется отношение предпочтения между альтернативой aj и всеми остальными альтернативами, функция принадлежности которого имеет вид:
где Ij — множество индексов альтернатив, с которыми может сравниваться j-я альтернатива.
Решение задачи ранжирования можно описать соотношениями:
где rj — ранг альтернативы.
Наиболее предпочтительная альтернатива имеет самый низкий ранг.
Дата добавления: 2021-01-11; просмотров: 370;