Основное уравнение неравномерного движения


При рассмотрении движения воды в открытых руслах в условиях неравномерного режима основная задача состоит в получении зависимости между глубиной потока в данном сечении h и расстоянием l от какого – либо начального сечения (у плотины, у перепада и т.д.) до рассматриваемого сечения.

Рассмотрим поток в призматическом русле с прямым уклоном дна
(i > 0), при этом образовалась кривая подпора (рис. 16.8). Выделим в потоке два сечения 1–1 и 2–2, расположенные на малом расстоянии Δl друг от друга. Нормальная глубина потока h0, h – переменная глубина неравно-

Рис. 16.8 мерного движения, Δh – разность между глубинами потока в первом и во втором сечениях. Общее уравнение неравномерного плавноизменяющегося движения в открытом призматическом русле с прямым уклоном дна (i > 0) имеет вид (рассматриваются два бесконечно близкие сечения)

. (16.1)

16.3. Анализ уравнения неравномерного движения при i > 0

Рассматривая уравнение (16.1)

,

видим, что если числитель правой части этого уравнения будет равен
нулю, т.е.

,

то и левая часть равна нулю и поэтому . При этом глубины по длине потока не меняются и уклон свободной поверхности равен уклону дна; в этом случае выражение

или

является уравнением равномерного движения .

Далее, очевидно, что знаменатель в правой части может быть положительным, отрицательным и равным нулю; если он равен нулю, т.е.

,

то получим

,

что является основным уравнением для определения критической глубины.

В этом случае и левая и правая части уравнения (16.1) обращаются в бесконечность, неравномерное движение перестает быть плавноизменяющимся и образуется гидравлический прыжок (при переходе от глубины меньше критической к глубине больше критической).



Дата добавления: 2016-08-23; просмотров: 2935;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.