Выбор топологии сети


 

В ряде случаев для обеспечения связи друг с другом станции в пределах одного района связываются в технологическое кольцо. Если потоки на различных участках технологического кольца значительно отличаются, то использование кольцевых SDH топологий бывает не всегда оправдано, так как приводит к завышению необходимого числа каналов, циркулирующих по кольцу, и, как следствие, к необходимости использовать SDH мульти­плексоры ввода/вывода более высокого уровня. В этих случаях может оказаться, что дешевле использовать сети с ячеистой структурой, основанные на топологиях "точка-точка" и "звезда", тем более, что современные мультиплексоры позволяют использовать последнюю топологию с достаточно большим числом лучей за счет использования более гибких схем кросс-коммутации в центральном узле.

Таким образом,можно предложить три возможные топологии: кольцевую, радиально-кольцевую и ячеистую.

Кольцеваятопология, объединяя все шесть станций в кольцо, требует использования мультиплексоров уровня STM-4 с суммарным потоком до 252 (4x63=252) каналов 2 Мбит/с, так как общий поток по кольцу, определямый максимальным потоком на одном из его участков, равен 212 каналов 2 Мбит/с (см. таб. 10.1 - поток через узел А на втором этапе. Преимуществом такого решения может быть только стопроцентное резервирование всех, а не только требуемых, каналов.

Радиально-кольцевая топология. Так как только два узла; Е и F имеют потоки меньше 63 каналов - 27 и 31 соответственно, то кольцо должно состоять из 4 мультиплексоров уровня STM-4 и одной радиальной ветви (если Е и F связаны между собой непосредственно) или двух радиальных ветвей (если они подключаются к кольцу порознь: Е к С, а F к D и не связаны между собой непосредственно). Радиальные ветви требуют топологии "точка-точка" типа уплощенного кольца, если нужна защита, где "точка", контактирующая с кольцом или мультиплексор связидолжен быть типа ADM, а не ТМ, для организации перегрузки потока с кольцевого узла на радиальный. В первом варианте решения поэтому потребуется 4 мультиплексора уровня STM-4 и три - уровня STM-1, во втором - на один мультиплексор уровня STM-1 больше. В ряде случаев роль мультиплексора может играть мультиплексор кольцевого узла, что уменьшает надежность сети, но приводит к экономии одного (первый вариант) или двух (второй вариант) мультиплексоров связи.

Ячеистая топологияможет иметь вид, приведенный на рис. 10.1. Ячеистая сеть состоит из двух квадратных ячеек и содержит шесть узлов. Каждый из них на практике соответствует мультиплексору уровня STM-N, установленному на цифровой АТС. В нашем случае в узлах А, В, С, D - мультиплексоры уровня STM-4, а в узлах Е и F - уровня STM-1 (потоки между С и Е, Е и F, D и F несут меньше 63 каналов).

 

 


Рисунок 10.1 - Схема простой ячеистой сети SDH

Эта схема приводит к минимальному числу мультиплексоров различных уровней и с этой точки зрения она оптимальна, однако сложности возникают при необходимости организации защиты выделенных каналов. Вопросы защиты решаются здесь как и в обычных сетях путем направления выделенного канала по двум маршрутам с совпадающими конечными точками, например, по маршрутам А®В и А®С®D®B. Такая схема защиты "по разнесенным маршрутам" (1:1) иногда более предпочтительна, чем схема защиты 1:1 в кольце SDH. Однако она требует более тщательного расчета числа потоков, проходящих по отдельным ветвям сети, для того, чтобы убедиться, что оно не превышает возможности кросс-коммутатора узлового мультиплексора, прежде чем ответить на вопрос о том, какого уровня мультиплексор может быть использован в данном узле.

В качестве основных и резервных выбраны следующие маршруты:

Заметим, что резервные маршруты в этой топологической структуре выбираются в пределах одной ячейки.

Расчет потоков в ветвях выполняется на основе принятых маршрутов и данных табл. 10.1. В результате получена таблица 10.2, дающую сводную информацию о потоках, проходящих по ВОК между узловыми мультиплексорами на станциях (защищаемые каналы, проходящие по резервным маршрутам, помечены буквой "р"). Число каналов дано по периодам. В последней строке помещены итоговые суммы на последнем этапе.

 

Таблица 10.2 - Основные и резервные потоки по сегментам ячеистой сети

 

 


3. Выбор уровня иерархии SDH, числа мультиплексоров и необходимого оборудования

 

Полученная таблица подтверждает правильность выбора уровней мультиплексоров в узлах A-F и может служить показателем эффективности использования коммутационной способности узлов. В результате данного краткого обзора возможных топологий можно рекомендовать для использования ячеистую сеть с топологией рис. 10.1 как оптимальную, так как она при минимальном числе мультиплексоров (4 - уровня STM-4 и 2 - уровня STM-1) удовлетворяет поставленным условиям по резервированию определенных указанных каналов.

Для конфигурации узлов, составления спецификации сменных модулей и прорисовки блок-схемы соединений сменных блоков всех узлов, нужно иметь номенклатуру функциональных сменных блоков . Для этого необходима привязка к оборудованию конкретного производителя. Для нашего примера выбрано оборудование компании Nokia. Учитывая два этапа развития сети, следует указать какие блоки будут установлены на первом и какие на втором этапах.

Номенклатура сменных блоковSDH компании Nokia, используемых в примере:

- 2М - трибный интерфейсный блок 2 Мбит/с - интерфейсная карта на 16 портов 2 Мбит/с без терминального адаптера (ТА), функционирует только при наличии сменного блока 2МТА (до трех карт 2М на одну карту 2МТА);

- 2МТА - трибный интерфейсный блок 2 Мбит/с - интерфейсная карта на 16 портов 2 Мбит/с с терминальным адаптером (ТА);

- STM-1 - линейный оптический агрегатный блок 155 Мбит/с;

- STM-1E - линейный электрический агрегатный блок 155 Мбит/с;

- STM-4 - линейный оптический агрегатный блок 622 Мбит/с;

- SSW - блок системного кросс-коммутатора - центральный блок кросс-коммутатора типа DXC-4/4/1 с эквивалентной емкостью коммутации 16xAU-4 для коммутации VC-4, VC-12;

- TSW1 - терминальный блок системного кросс-коммутатора - блок синхронизации AU-12 и AU-4 на входе для осуществления кросс-коммутации;

- CU - блок управления и синхронизации;

- SPIU - блок питания полки (кассеты);

- SU - блок обслуживания интерфейсов.



Дата добавления: 2020-11-18; просмотров: 353;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.