Анализ корреляционной зависимости массы семян (у) от продолжительности вегетационного периода (х) у сортов ячменя (по Г. Н. Зайцеву, 1984)


х: у ny ay
   
 
 
 
         
           
nx N=214
∑fay
12,50 304,69 489,44 761,29 1160,12 136,13 72,25 2936,42  

Продолжение табл. 15

ax ∑n xа x2 2260
2,50 3,24 3,79 3,48 3,96 4,13 4,25    
y/x 37,00 41,44 44,74 42,88 45,76 46,78 47,50    

 

2. Суммируем частоты по столбцам (nx) и по строкам (ny).

3. Записываем условные отклонения ах и ау от начала рядов х и у в виде натурального ряда чисел, начиная с 0, соответственно направлению возрастания вариант в обоих рядах.

4.Получаем по столбцам суммы произведений частот на соответствующие им условные отклонения ау: первая сумма 5= 1 х 3 + 1 х 2; последняя сумма 17 = 2 х 5 + 1 х 4 + 1 х 3. В итоге этой строки ∑fay = 790.

5.Значения ∑fay = 790 возводим в квадрат и делим каждое из них на соответствующие им суммы частот , получаем: 12,50; 304,69; и т.д., в итоге этой строки получаем по формуле:

6. Для получения точек эмпирической линии регрессии отдельные значения и т. д. надо разделить на соответствующие им nx: 2, 29, 34 и т.д. В результате получим : 2,50; 3,24 и т.д. Каждое из полученных значений умножается на величину классового интервала С=6 и к каждому произведению прибавляется минимальная варианта у = 22: 2,50 х 6 +22 = 37,00; 3,24 х 6 + 22 = 41Б44 и т.д. Полученные значения у/х представляют собой точки эмпирической линии регрессии.

7. Перемножаем все значения n на соответствующие условные отклонения ах и складываем произведения: 2 х 0 + 29 х 1 + 34 х 2 +63 х 3 + …+ 4 х 6 = ∑nxax.

8. Получаем сумму ∑n x ax2=2260, перемножая значения nx на квадраты условных отклонений: 2 х 02 + 29 х 12 … и т.д.

9. Получаем суммы в результате действий, аналогичных пунктам 7 и 8:

∑ n y ay = 790 = 1 x 0 + 6 x 1 … и т.д.

∑ n y a2у = 3222 = 1 x 02 + 6 x 12 + 26 х 22 …и т.д.

10. Вычисляем сумму 2448 = 0 х 5 + 1 х 94 + 2 х 129 … и т.д.

11. Подставляя найденные значения в формулы, получим:

12. Оценку показателей производим по критерию Фишера.

Достоверность коэффициента детерминации (квадрата коэффициента корреляции) определяется по формуле: где F – критерий Фишера; r- коэффициент корреляции; N - объем выборки.

Числа степеней свободы при оценке коэффициента детерминации принимаются: отсюда табличное значение критерия Фишера при P1=95% равно 3,89. Вычисленное по формуле критерий больше табличного, что показывает на существование достоверной прямолинейной зависимости массы зерен от продолжительности Вегетации.

Достоверность квадрата корреляционного отношения определяется по формуле: где F- критерий Фишера; - прямое корреляционное отношение; N- объем выборки; kx- число классов в ряду х.

Число степеней свободы при определении достоверности по таблице принимаются равными числу классов ряда х без единицы: и объему выборки минус число классов ряда х: При Р1= 95% F табличное составляет 2,14. Вычисленное значение критерия – 2,42, что больше табличного, следовательно наблюдается и криволинейная зависимость между массой зерен и продолжительностью вегетационного периода у сортов ячменя.



Дата добавления: 2020-10-25; просмотров: 393;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.024 сек.