Линейное уравнение множественной регрессии


Математическое уравнение для прямолинейной зависимости между тремя переменными называется множественным линейным уравнением плоскости регрессии. Оно имеет следующий общий вид:

(12.10)

Здесь Y – зависимая переменная, X и Z – независимые переменные, а – общее начало отсчета, b1 и b2 – коэффициенты частной регрессии. Коэффициент b1 показывает, на какую величину увеличивается Y при каждом увеличении на одну единицу X при постоянном значении Z; коэффициент b2 указывает, на какую величину увеличивается Y при увеличении Z на единицу при постоянном значении X. Поэтому часто используют обозначения
b1 = byx-z и b2 = byz-x, принятые для частных коэффициентов корреляции.

Параметры а, b1 и b2 вычисляют методом наименьших квадратов, который позволяет найти такое положение плоскости регрессии в пространстве, когда сумма квадратов отклонений эмпирических точек от нее является минимальной:

(12.11)

Установленное уравнением регрессии отношение зависимости коррелируемых признаков принято изображать графически в виде линий и поверхности регрессии. Поверхность регрессии дает четкое представление об эффекте комбинированного влияния изучаемых факторов на результативный признак.

Необходимо подчеркнуть, что математические уравнения для парной и множественной регрессии имеют смысл только в области фактических значений X, Y и Z только тогда, когда корреляционная связь значимо отличается от нуля.

 

Вопросы для самоконтроля

 

1 Что такое множественная корреляция?

2 Дайте определение частному коэффициенту корреляции.

3 С какими статистическими характеристиками формально связан частный коэффициент корреляции?

4 Дайте определение ошибке и критерию значимости частной корреляции. Отличен ли он от ошибки и критерия значимости парной корреляции?

5 Какие могут принимать значения частные коэффициенты корреляции?

6 Дайте определение множественному коэффициенту корреляции.

7 С какими статистическими характеристиками формально связан множественный коэффициент корреляции?

8 В каких пределах находятся значения множественного коэффициента корреляции?

9 Дайте определение коэффициента множественной детерминации.

10 По какому критерию оценивается значимость множественной корреляции?

11 Напишите линейное уравнение множественной регрессии.

12 Дайте графическую интерпретацию уравнения множественной регрессии.

ТЕМА 13 Криволинейная корреляция и регрессия

13.1 Корреляционное отношение

13.2 Свойства корреляционного отношения

13.3 Ошибка репрезентативности корреляционного отношения

13.4 Критерий линейности корреляции

 



Дата добавления: 2020-10-25; просмотров: 395;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.