Векторный магнитный потенциал. Векторное уравнение Пуассона. Применение для вычисления магнитных потоков


Так как магнитное поле вихревое , то для упрощения его описания вводят не скалярный, а векторный потенциал А с помощью следующих соотношений

После этого три векторных уравнения, описывающие поле , превращаются в одно векторное

При это уравнение принимает вид

То есть превращается в векторное уравнение Пуассона

Как известно, магнитный поток определяется как поток вектора магнитной индукции через поверхность S

Магнитный поток может быть вычислен и с помощью векторного потенциала. В соответствии с теоремой Стокса

Интеграл по площади заменяется интегралом по контуру, охватывающему эту площадь (теорема Стокса)

Для магнитного поля бесконечно длинного проводника с током векторный потенциал имеет только одну проекцию по направлению провода и определяется по формуле (по аналогии с электростатическим потенциалом бесконечно длинной заряженной нити)

Для двухпроводной линии с током

С учетом представленных выражений для векторного потенциала определим магнитный поток сквозь рамку от двухпроводной линии с током иным способом, чем в предыдущей задаче

Для стороны рамки 1 : r1=a+d , r2=a ;

Для стороны рамки 2 : r1=a+d+с , r2=a+с ;

Определим поток через рамку спомощью циркуляции векторного потенциала по контуру рамки. На сторонах рамки 1 и 2 направление вектоного потенциала совпадает с ориентацией этих сторон, а на двух других сторонах перпендикулярно. При раскрытии интеграла останутся только составляющие сторон рамки 1 и 2. Так как в данной задаче векторный потенциал не изменяется вдоль оси z (по направлению линии), то получим

Можно убедится, что результат совпадает с расчетом с помощью вектора магнитной индкуции при интегрировании по площади рамки.

Расчет с помощью потенциала А гораздо эффективнее для случаев , когда плоскость рамки находится под углом к плоскости линии.

На рисунке рамка поворачивается вокруг оси, совпадающей со стороной 1 .При повороте плоскости рамки на угол α взаимная индуктивность линии и рамки

График распределения отностельного значения взаимной индуктивности от угла поворота рамки приведен ниже

 

Расчет проведен при заданных геометрических размерах:



Дата добавления: 2020-03-21; просмотров: 844;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.