Основные приемы изучения взаимосвязей
Для изучения, измерения и количественного выражения взаимосвязей между явлениями статистикой применяются различные методы, такие как: метод сопоставления параллельных рядов, балансовый, графический, методы аналитических группировок, дисперсионного и корреляционного анализа.
Метод параллельных рядов заключается в том, что полученные в результате сводки и обработки материалы располагают в виде параллельных рядов и сопоставляют их между собой для установления характера и тесноты связи.
Балансовый метод состоит в том, что данные взаимосвязанных показателей изображаются в виде таблицы и располагаются таким образом, чтобы итоги между отдельными ее частями были равны, т.е. чтобы был баланс. Балансовый метод используется для характеристики взаимосвязи между производством и распределением продуктов, денежными доходами и расходами населения и т.д. Почти все внутренние и внешние хозяйственные связи выражаются в виде балансов.
Метод аналитических группировок. Сущность метода аналитических группировок состоит в том, что единицы статистической совокупности группируются, как правило, по факторному признаку и для каждой группы рассчитывается средняя или относительная величина по результативному признаку. Затем изменения средних или относительных значений результативного признака сопоставляются с изменениями факторного признака для выявления характера связи между ними.
Дисперсионный анализ дает прежде всего возможность определить значение систематической и случайной вариаций в общей вариации, а также установить роль интересующего нас фактора в изменении результативного признака.
Для характеристики тесноты корреляционной связи между признаками в аналитических группировках межгрупповую дисперсию сопоставляют с общей. Это сопоставление называется корреляционным отношением и обозначается:
(8.5.)
Оно характеризует долю вариации результативного признака, вызванной действием факторного признака, положенного в основание группировки. Корреляционное отношение по своему абсолютному значению колеблется в пределах от 0 до 1. Чем ближе корреляционное отношение к 1, тем большее влияние оказывает факторный признак на результативный. Если же факторный признак не влияет на результативный, то вариация, обусловленная им, будет равна нулю (d 2= 0) и корреляционное отношение также будет равно нулю (h2=0), что говорит о полном отсутствии связи. И наоборот, если результативный признак изменяется только под воздействием одного факторного признака, то вариация, обусловленная этим признаком, будет равна общей вариации (h2=h2) и корреляционное отношение будет равно единице (h2 = 1), что говорит о существовании полной связи.
Дисперсионный анализ позволяет не только определить роль случайной и систематической вариаций в общей вариации, но и оценить достоверность вариации, обнаруженной методом аналитических группировок. Определение достоверности вариации дает возможность с заданной степенью вероятности установить, вызвана ли межгрупповая вариация признаком, положенным в основание группировки, или она является результатом действия случайных причин. Для оценки существенности корреляционного отношения пользуются критическими значениями корреляционного отношения h2при разных уровнях вероятности или значимости a.
Уровень значимости — это достаточно малое значение вероятности, отвечающее событиям, которые в данных условиях исследования будут считаться практически невозможными. Появление такого события считается указанием на неправильность начального предположения. Чаще всего пользуются уровнями a = 0,05 или a = 0,01. Критические значения корреляционного отношения содержатся в специальных таблицах.
В этих таблицах распределение h2 при случайных выборках зависит от числа степеней свободы факторной и случайной дисперсии. Число степеней свободы факторной дисперсии равно:
К1=m-1 (8.6.)
где m — число групп, а для случайной дисперсии:
K1=n – m (8.7.)
где п — число вариант; m — число групп.
При проверке существенности связи чаще пользуются критерием Фишера, потому что при больших числах степеней свободы его табличные значения мало изменяются в отличие от корреляционного отношения, которое требует более громоздких таблиц. Критерий Фишера представляет собой отношение межгрупповой дисперсии к средней из внутригрупповых дисперсий, исчисленных с учетом числа степеней свободы:
(8.8)
Для этих отношений составляются таблицы, по которым можно определить, какая величина F при данном числе степеней свободы по факторной вариации (K1) и остаточной вариации (К2) дает основание утверждать с определенной вероятностью (например, 0,95; 0,99), что положенный в основание группировки признак является существенным, или не дает такого основания, и, следовательно, группировочный признак является несущественным.
Зная корреляционное отношение, можно определить критерий Фишера по следующей формуле:
(8.9.)
Подобный дисперсионный анализ может проводиться при группировке по одному факторному признаку или при комбинационной группировке по двум и более факторам.
В таком случае необходима оценка достоверности влияния не только каждого положенного в основание группировки фактора в отдельности, но и результата их взаимодействия. Последний определяется как разность между эффектом совместного влияния двух группировочных признаков и суммой эффектов влияния каждого из этих факторных признаков, взятых в отдельности. Это осложняет расчеты суммы квадратов отклонений и числа степеней свободы вариации. Но сам принцип дисперсионного анализа, основанный на сопоставлении факторной дисперсии со случайной для оценки достоверности результатов статистической группировки, остается применим независимо от числа признаков группировки.
Дата добавления: 2016-07-22; просмотров: 3185;