Тема 8. Статистическое изучение взаимосвязи социально – экономических явлений
Измерение связи
Все явления общественной жизни взаимосвязаны и взаимообусловлены. Задача статистики состоит в том, чтобы выявить и измерить связи и зависимости между изучаемыми явлениями.
Взаимосвязанные признаки подразделяются на факторные (под их воздействием изменяются другие, зависящие от них признаки) и результативные.
Связи по степени тесноты могут быть функциональными (при которых определенному значению факторного признака соответствует строго определенное значение результативного признака; для выявления такой связи достаточно одного наблюдения), статистическими (когда одному и тому же значению факторного признака могут соответствовать несколько значений результативного признака; эти связи проявляются в массе случаев и при том - в среднем). Функциональные связи иначе называются полными, а статистические — неполными или корреляционными.
Корреляционная зависимость проявляется только в средних величинах и выражает числовое соотношение между ними в виде тенденции к возрастанию или убыванию одной переменной величины при возрастании и убывании другой.
Корреляционная связь является свободной, неполной и неточной связью. Например, себестоимость величины продукции зависит от уровня производительности труда: чем выше производительность труда, тем ниже ce6eстоимость. Но себестоимость зависит также и от ряда других факторов: стоимости сырья и материалов, топлива, электроэнергии, их расхода на единицу продукции, цеховых общезаводских расходов и т.д. Поэтому нельзя утверждать, что при повышении производительности труда, допустим, на 10% себестоимость снизится также на 10%. Может случиться, что, несмотря на рост производительности труда, себестоимость не только не снизится, но даже несколько повысится, если на нее окажут более сильное влияние действующие в обратном направлении другие факторы.
По направлению различают прямую и обратную связь. Если с увеличением аргумента х функция у также увеличивается без всяких единичных исключений, то такая связь называется полной прямой связью. Если с увеличением аргумента х функция у уменьшается без всяких единичных исключений, то такая связь называется полной обратной. Кроме того, в виде исключений, которые, однако, не нарушают общей тенденции, встречается частичная связь — прямая или обратная. Когда признаки варьируют независимо друг от друга, говорят о полном отсутствии связи.
По аналитическому выражению корреляционная связь может быть прямолинейной и криволинейной. Прямолинейной называется связь, когда величина явления изменяется приблизительно равномерно в соответствии с изменением величины влияющего фактора. Математически прямолинейная связь может быть выражена уравнением прямой:
V=a0 +a1х, (8.1)
которое называется линейным уравнением регрессии.
Если происходит неравномерное изменение явления в связи с изменением величины влияющего фактора, то такая связь называется криволинейной. Математически криволинейная зависимость может быть выражена уравнением криволинейной связи. В экономическом анализе для ее выражения часто пользуются уравнением параболы второго порядка:
V = а0 + a1 х + а2х2 (8.2)
Уравнение криволинейной связи может быть выражено и в виде дробной функции:
(8.3)
показательной функции:
(8.4.)
Однако корреляционные связи могут быть выражены лишь приблизительно, в то время как функциональные связи имеют точное аналитическое выражение.
Дата добавления: 2016-07-22; просмотров: 2384;