ИСТОЧНИКИ И ПУТИ ПОСТУПЛЕНИЯ РАДИОНУКЛИДОВ


В ОРГАНИЗМ

До середины XX в. природные источники ионизирующих излу­чений были единственными в облучении человека, создавая есте­ственный радиационный фон (ЕРФ). Основным дозообразующим компонентом ЕРФ является земное излучение от естественных ра­дионуклидов, существующих на протяжении всей истории Земли. Космическое излучение и излучение природных радионуклидов, содержащихся в почве, воде и воздухе, составляют естественный фон излучения, к которому адаптирована современная биота. Наименьший уровень природной радиоактивности у поверхности моря и в его верхних слоях, а наибольший — в горах с гранитными породами. Он колеблется от 8—12 до 20—50мкР/ч. Космическое излучение на большей части территории России составляет 28— О мрад/год с максимальными величинами в горах. В среднем доза облучения от всех естественных источников ионизирующего излу­чения составляет в год около 200 мР, хотя это значение может ко­лебаться в разных регионах земного шара от 50 до 1000 мР/год и более.

Естественная радиоактивность определяется содержанием ра­дионуклидов в почвах. За год суммарное количество естественных продуктов их деления на Земле эквивалентно количеству продук­тов деления от взрыва одной атомной бомбы небольшой мощнос­ти. Естественная радиоактивность атмосферы определяется в ос­новном содержанием радона, гидросферы — содержанием урана, радия, радона. От этих источников человек подвергается воздей­ствию как внешнего (в результате излучения радионуклидов, нахо­дящихся в окружающей среде), так и внутреннего облучения (за счет радионуклидов, попадающих внутрь организма с воздухом, водой и продуктами питания). Большинство исследователей счи­тают, что наибольшее значение имеют источники внутреннего об­лучения, которые обусловливают, по данным разных авторов, примерно от 50 до 68 % ЕРФ.

Основное значение во внутреннем облучении имеют поступаю­щие с воздухом, водой и продуктами питания радионуклиды се­мейств урана-238 и тория-232, их многочисленные дочерние продукты, а также изотоп калия — калий-40. Средняя величина эф­фективной эквивалентной дозы внутреннего облучения при неиз­менном фоне составляет 0,72 мЗв/год, из которых основная часть приходится на долю семейства урана (56 %), калия-40 (25 %) и то­рия (16%).

Основным источником природных радиоактивных элементов, поступающих в организм человека, являются пищевые продукты. Удельная активность изотопов свинца 2|0РЬ и полония 210Ро в рас­тительной пище составляет от 0,02 до 0,37 Бк/кг. Особенно вы­сокая активность 210РЬ и 210Ро обнаружена в чае (до 30,5 Бк/кг). В продуктах животного происхождения (молоке) удельная актив­ность 2*°РЬ колеблется в пределах от 0,013 до 0,18 Бк/кг, а 210Ро -от 0,13 до 3,3 Бк/кг. Таким образом, суммарная радиоактивность растений в 10 раз выше, чем тканей животных. Поверхностные водоисточники могут также содержать повышенное количество радионуклидов.

В настоящее время естественный радиационный фон в резуль­тате деятельности человека качественно и количественно изме­нился. Повышение ЕРФ под влиянием новых видов технологи­ческой деятельности человека получило название техногенно-усиленного фона. Примерами такой деятельности являются широкое применение минеральных удобрений, содержащих примеси урана (например, фосфорных); увеличение добычи урановых руд; массо­вое увеличение числа авиационных перевозок, при которых кос­мическое облучение растет.

Среднегодовая эквивалентная доза облучения всего тела чело­века естественными источниками ионизирующих излучений при­мерно была равна 1 мЗв (100 мбэр). Однако с учетом техногенно-усиленного фона, поданным ООН, значение эффективной эк­вивалентной дозы облучения увеличилось в 2 раза—до 2 мЗв (200 мбэр) в год (1982). В наиболее развитых странах уровень фо­новой радиации достигает 3—4 мЗв в год.

Радиоактивное загрязнение биосферы связано с антропоген­ным воздействием, к основным источникам которого относятся производство и испытание ядерного оружия, строительство атом­ных электростанций (АЭС) и ядерных научно-исследовательских учреждений, сжигание угля. За 15 лет (с 1971 по 1986 г.) в 14 стра­нах мира на предприятиях атомной промышленности произошло 152 аварии разной степени сложности, с разными последствиями для населения и окружающей среды. Крупные аварии произошли в Великобритании, США и СССР. Серьезную опасность загряз­нений представляют аварийные выбросы радиоактивных матери­алов на названных объектах. Крупнейшие аварийные выбросы радиоактивных материалов произошли в 1957 г. на Южном Урале (Челябинская обл., окрестности г. Кыштыма) и в апреле 1986 г. в Чернобыле. Общая загрязненная площадь в результате черно­быльской аварии составила в первые дни около 200 тыс. км2. Радиоактивные осадки достигли Западной Европы, Кольского полу­острова, Кавказа. Выбросы в атмосферу при аварии на ЧАЭС име­ли специфический состав — в первые недели после взрыва основ­ным был радиоактивный йод, затем — радиоизотопы цезия- 137, стронция-90.

При густом растительном покрове травянистой растительнос­тью сорбируется около 80 % выпавших радионуклидов, при ред­ком — 40%, остальная часть радионуклидов попадает в почву. Миграция значительной части выпавших радионуклидов происхо­дит с водой по гидрологической сети.

По радиоэкологической значимости наибольший вклад в ради­ационную нагрузку вносят следующие элементы: 3Н, 14С, 137Cs, 238U, 234J, 226Ra, 222Rn, 2l0Po, 239Ru, 90Sr (Клюев, 1993).

Практика обезвреживания радиоактивных отходов заключается в их разбавлении, рассеянии и длительном хранении путем остекловывания, цементирования, захоронения в слабопроницаемые участки литосферы. Отходы, разбавленные и рассеянные челове­ком, накапливаются в элементах биосферы, передаются по пище­вым цепям и в конечных их звеньях достигают величин, намного превышающих установленные нормативы. Радиоактивные выб­росы и отходы становятся безопасными для окружающей среды в течение промежутка времени, равного 20 периодам полурас­пада входящих в их состав радиоактивных элементов, основу которых составляют l37Cs, 90Sr. Период полураспада стронция-90 равен 28,5 года, цезия- 1 37 — 30,2 года, и для их естественной дезактивации потребуется соответственно 570 и 604 года, что сопоставимо с продолжительностью исторических эпох. Техно­генный пресс за счет 90Sr на порядок, a ^Cs в тысячу раз и бо­лее превышает их естественное содержание. Зона максималь­ной аккумуляции этих радионуклидов за счет их глобальных выпадений сформировалась в Северном полушарии между 20" и 60° с. ш., с наибольшей активностью в лесных заболоченных ландшафтах.

Для случаев возникновения радиационных аварий были разра­ботаны временно допустимые уровни (ВДУ) и допустимые уровни (ДУ) поступления радионуклидов внутрь организма с учетом ин­тегральных поглощенных доз за ряд последующих лет. ВДУ актив­ности радиоактивных веществ в продуктах питания в этих услови­ях рассчитывают, исходя из того, что интегральные дозы облуче­ния тела человека не должны превышать 0,1 3 в/год, а дозы облучения щитовидной железы — 0,3 Зв/грд.

Принятые комиссией Codex Alimentarius ФАО/ВОЗ допусти­мые уровни радиоактивных веществ в загрязненных пищевых продуктах, реализуемых на международном рынке и предназна­ченных для всеобщего потребления, составляют: для цезия и йода— 1000 Бк/кг, для стронция — 100, для плутония и амери­ция — 1 Бк/кг.

Для молока и продуктов детского питания допустимые уров­ни активности составляют: для цезия — 1000 Бк/кг, для строн­ция и йода— 100, для плутония и америция — 1 Бк/кг. По мне­нию ВОЗ, предлагаемые уровни основаны на критериях, обеспе­чивающих охрану здоровья и безопасность населения.

У человека в процессе эволюции не выработались специальные защитные механизмы от ионизирующих излучений, и с целью предотвращения неблагоприятных последствий для населения по рекомендации Международной комиссии по радиационной защи­те ожидаемая эффективная эквивалентная доза не должна превы­шать 5 мЗв за любой год радиоактивного воздействия.

Различают поверхностное (воздушное, аэральное) и структур­ное (корневое, почвенное) загрязнение пищевых продуктов ра­дионуклидами. При поверхностном загрязнении радиоактивные ве­щества, переносимые воздушной средой, оседают на поверхности продуктов, частично проникая внутрь растительной ткани. Более эффективно радиоактивные вещества удерживаются на растениях с опушенными листьями и стеблями, в складках листьев и соцве­тиях. При этом задерживаются не только растворимые формы ра­диоактивных соединений, но и нерастворимые. Аэральное радио­активное загрязнение растений происходит в результате выпаде­ния радиоактивных осадков из атмосферы при ядерных взрывах, авариях на АЭС. Выпадая на вегетирующие посевы, часть их осе­дает на поверхности почвы. Радионуклиды проникают в ткани на­земных органов растений при мокрых выпадениях — с дождем, а при сухих — после дождя. При высокой влажности воздуха радио­нуклиды проникают в ткани растений эффективнее, чем при низ­кой. Поверхностное загрязнение радионуклидами относительно легко удаляется даже через несколько недель.

Структурное загрязнение радионуклидами обусловлено физико-химическими свойствами радиоактивных веществ, составом почвы, физиологическими особенностями растений. Попадающие в ат­мосферу радиоактивные вещества в конечном счете концентри­руются в почве. Радионуклиды, выпавшие на поверхности почвы, на протяжении многих лет остаются в ее верхнем слое, постоянно мигрируя на несколько сантиметров в год в более глубокие слои. Это в дальнейшем приводит к их накоплению в большинстве рас­тений с хорошо развитой и глубоко проникающей корневой систе­мой. Через несколько лет после радиоактивных выпадений на зем­ную поверхность поступление радионуклидов в растения из почвы становится основным путем попадания их в пищу человека и в корм животных. Радиоактивные вещества, попадающие в почву, могут частично вымываться из нее и попадать в грунтовые воды.

Наиболее высокие уровни перехода 90Sr и 137Cs из почвы в рас­тения наблюдаются на дерново-подзолистых почвах легкого гра­нулометрического состава, меньше — на серых лесных почвах и самые низкие — на черноземах. Из кислых почв радионуклиды

поступают в растения в значительно больших количествах, чем из слабокислых, нейтральных или слабощелочных почв. Отношение содержания радионуклидов в единице растительной массы к со­держанию их в единице массы почвы или в единице объема ра­створа называется коэффициентом накопления. Радионуклиды, по­ступившие в надземную часть растений, в основном концентриру­ются в соломе (листья, стебли), меньше — в мякине (колосья, метелки без зерна) и в небольших количествах — в зерне. С возра­стом растений увеличивается абсолютное количество радионукли­дов в надземных органах и снижается их содержание на единицу массы сухого вещества.

Содержание радионуклидов в единице массы уменьшается по мере увеличения урожая. В товарной части растениеводческой продукции (зерно, корнеплоды, клубни) боль­ше всего 90Sr и 137Cs на единицу массы урожая содержат корнепло­ды (свекла, морковь) и бобовые (горох, соя, вика), за ними следу­ют картофель и зерновые злаки. Озимые зерновые культуры (пше­ница, рожь) накапливают в 2—2,5 раза меньше 90Sr и 137Cs, чем яровые (пшеница, ячмень, овес). Больше всего 90Sr накапливается в корнеплодах столовой свеклы и меньше всего — в плодах тома­тов и клубнях картофеля.

По степени накопления радиоактивных веществ растения рас­полагаются в следующем порядке: табак (листья) > свекла (кор­неплоды) > бобовые > картофель (клубнеплоды) > пшеница (зер­но) >, естественная травянистая растительность (листья и стебли). Быстрее всего из почвы в растения поступает стронций-90, строн-ций-89, йод-131 барий-140 и цезий-137. Уменьшению поступле­ния в растения 90Sr способствует внесение известковых, a 137Cs — калийных удобрений. Внсение органических удобрений уменьша­ет поступление в растения цезия и стронция в 2—3 раза. Внесение минеральных азотных удобрений либо не оказывает существенно­го влияния на усвоение растениями радионуклидов, либо увели­чивает его. Орошение резко увеличивает интенсивность перехода радионуклидов из почвы в растения, особенно при дождевании.

В Беларуси в результате аварии на Чернобыльской АЭС основ­ным загрязнителем пахотного слоя почв и растениеводческой продукции является цезий-137. В большинстве обрабатываемых угодий он равномерно распределился в пределах пахотного слоя, а на необрабатываемых землях находится в пределах дернины. Стронций-90 более подвижен в почвенной среде и перемещается по почвенному профилю в пределах метрового слоя. К основным факторам, определяющим степень загрязнения продукции расте­ниеводства радионуклидами, относятся:

« агрохимические и агрофизические свойства почвы;

в содержание в ней элементов минерального питания, особен­но элементов — аналогов основных загрязнителей (Са, К);

» распределение радионуклидов по почвенному профилю и водный режим почвы.

Чем меньше доля радионуклида в общей концентрации радио­нуклид + элемент-аналог, тем меньше поступает его в растение. Чем больше влажность корнеобитаемого слоя и концентрация ра­дионуклида, тем больше его поглощение. Для снижения поступле­ния в растения радионуклидов необходимо:

• поддержание уровня грунтовых вод на глубине не менее 75—
100 см от поверхности;

• внесение повышенных доз Са и К;

• внесение минеральных удобрений в подпахотный слой по­
чвы, запашка верхнего загрязненного слоя на глубину 60—80 см
с внесением в него Са и К (Афанасик и др., 2001).

При загрязнении радионуклидами содержание марганца в золе мать-и-мачехи, крапивы двудомной, хвоща лесного, щитовника мужского, мхов уменьшается на промплощадке до 0,03—0,05 %, в лесу до 0,12—0,19% при норме 0,25—0,60%. Марганец играет важную роль в процессах фотосинтеза и в азотном обмене. Погло­щение растениями радионуклидов ведет к перестройке механизма фотосинтеза и азотного обмена, роль марганца начинают выпол­нять радионуклиды. При загрязнении радионуклидами частота хромосомных аберраций в мужских половых клетках в пыльниках растений возрастает в 2 раза.

Радиоактивность большинства источников пресной воды неве­лика и определяется присутствием в основном ^К и 226Ra. Радио­активное загрязнение пресных вод носит локальный характер и связано с попаданием в них урана и отходов атомной промыш­ленности. При эксплуатации АЭС в биосферный цикл посту­пают 3Н, 14С.

Пути поступления радионуклидов в организм человека с пи­щей достаточно сложны и разнообразны. Подавляющая часть радионуклидов поступает в организм человека по пищевым це­пям. Основным каналом вовлечения радионуклидов в пищевые цепи является сельское хозяйство. Растения могут загрязняться в процессе выпадения радионуклидов из воздуха (аэральный путь загрязнения). В то же время выпавшие радионуклиды по­падают в почву, из почвы — в корни растений и снова через ра­стения — в организм животного и человека.

Значительная часть радионуклидов поступает в организм чело­века по пищевой цепи: почва — сельскохозяйственные живот­ные — продукция животноводства — человек. Радионуклиды по­ступают в организм животных через органы дыхания, желудочно-кишечный тракт с пищей и через поверхность кожи. Жвачные животные потребляют много грубых и сочных кормов. С травой в их организм попадает большое количество радионуклидов, выпав­ших на пастбище. Продукты животноводства (особенно молоко и молочные продукты) — основной источник радионуклидов для человека. В некоторых случаях с растительной пищей в организм человека может поступать до 40—60 % 137Cs и 90 Sr/

Наиболее интенсивно радионуклиды накапливаются у молодых животных. Отложение 90Sr в организме животных зависит от уров­ня кальциевого питания. Насыщение кальцием рациона, содержа­щего относительно мало этого элемента, позволяет снизить на­копление радиостронция в скелете в 2—4 раза. Мягкие органы и ткани накапливают небольшое количество 90Sr. Более высокие концентрации радионуклида отмечаются у мелких животных (овцы, козы), а сравнительно низкие — у крупного рогатого скота, свиней, лошадей. Концентрация 90Sr в сале и внутреннем жире обычно в несколько раз ниже, чем в мышечной ткани. Закономер­ности накопления 137Cs в организме животных имеют много об­щего с особенностями отложения 90Sr. Цезий выводится из орга­низма животных быстрее, чем 90Sr. Радиоактивные продукты деле­ния выводятся в основном через желудочно-кишечный тракт. Исключение составляют радиоактивные изотопы йода, которые экскретируются из организма в основном через почки. Чем выше молочная продуктивность, тем большее количество радионукли­дов выделяется с суточным удоем. В конце лактации концент­рация 90Sr и 1311 в расчете на 1 л молока возрастает примерно в 1,5 раза. Поступление этих радионуклидов в молоко снижается при добавлении в рацион коров йодистого натрия и карбоната кальция. После выпадения продуктов ядерного деления на мест­ности возможно интенсивное загрязнение куриных яиц радиоак­тивными веществами, особенно если куры значительную часть времени находятся вне помещения.

Можно выделить следующие пути поступления радионуклидов в организм человека: растение — человек; растение — животное — молоко — человек; растение — животное — мясо — человек; ат­мосфера — осадки — водоемы — рыба — человек; вода — человек; вода — гидробионты — рыба — человек.

Кроме пищевого радионуклиды поступают в организм воздуш­ным и кожным путями. Воздушный путь наиболее опасен в пери­од рассеивания радионуклидов после аварии или выброса в атмо­сферу из-за большого объема легочной вентиляции и высокого ко­эффициента захвата и усвоения организмом изотопов из воздуха.

В зависимости от природы и химических соединений радио­нуклида процент его всасывания в пищеварительном тракте ко­леблется от нескольких сотых (цирконий, ниобий, редкоземель­ные элементы, включая лантаниды) до нескольких единиц (вис­мут, барий, полоний), десятков (железо, кобальт, стронций, радий) и до сотен (тритий, натрий, калий) процентов. Всасывание через неповрежденную кожу, как правило, незначительно. Только тритий легко всасывается в кровь через кожу.

Радиоактивные изотопы (I) накапливаются в организме так же, как и нерадиоактивные формы. Некоторые радионуклиды об­ладают химическим сродством с биогенными элементами, необхо­димыми организму. Установлено, что 90Sr включается в круговорот подобно кальцию, 137Cs — подобно калию. Основные природ­ные радионуклиды в наземной биоте— 14С, 40К, 210РЬ, 210Ро. Два последних радионуклида концентрируются в костных тканях.

В окружающей среде радионуклиды рассеиваются и могут кон­центрироваться живыми организмами при прохождении по пище­вым цепям. Радионуклиды активно концентрируются микроорга­низмами. Их концентрации в микроорганизмах могут в 300 раз превышать содержание радионуклидов в окружающей среде.

6.4.3. УСТОЙЧИВОСТЬ ЖИВЫХ ОРГАНИЗМОВ К ВОЗДЕЙСТВИЮ РАДИАЦИИ

Среди растений наиболее высокой радиационной устойчивос­тью обладают водоросли, лишайники, мхи. Их жизнедеятельность наблюдается при уровнях радиации 10—100 кР. Среди семенных растений наиболее радиочувствительные хвойные породы. Листвен­ные породы в 5—8 раз устойчивее хвойных. Уровень радиации, вызывающий гибель половины растений (LD50), составляет для хвойных пород 380—1200 Р, а для лиственных —2000—100000 Р. Травы примерно в 10 раз устойчивее древесных растений. Среди культурных растений люпин, эспарцет, люцерна, клевер при малых и более высоких дозах испытывают радиостимуляцию. Пшеница, ячмень, просо, лен, горох проявляют радиостимуляцию при малых и угнетение развития при более высоких концентрациях радионук­лидов в почве.

Сравнительно высокие показатели радиоустойчивости харак­терны для почвенных простейших, бактерий. LD50/30(доза, после получения которой половина организмов гибнет за 30 дней) со­ставляет у них 100—500 кР. Радиоустойчивость многоклеточных животных в среднем тем ниже, чем выше уровень их организации. В частности, ^Ао/зо составляет у круглых червей 10—400 кР, кольча­тых червей 50—160, паукообразных 8—150, ракообразных (мокрицы) 8—100, многоножек 15—180, имаго насекомых 80—200, личинок младших возрастов и куколок насекомых 2—25, млекопитающих 0,2—1,3, человека 0,5кР (Криволуцкий, 1983). У всех организмов особенно чувствительны к воздействию излучений клетки, нахо­дящиеся в состоянии быстрого роста и размножения. Повышен­ные уровни излучения легче переносят партеногенетические фор­мы и гермафродиты, чем обоеполые.

Через 2,5 мес после аварии в Чернобыле в 3 км от АЭС почвен­ная мезофауна в верхнем 3-сантиметровом слое почвы в сосняках на песчаных почвах была представлена лишь небольшим количе­ством личинок двукрылых. В результате аварийного выброса радио­активных элементов она была практически уничтожена. Числен­ность панцирных клещей снизилась в 30—40 раз, ногохвосток — в 9—10 раз. В пахотных почвах влияние радиации было менее губительным, численность почвенных насекомых в них снизилась в 2 раза. Через 2,5 года после аварии общая численность почвен­ной мезофауны практически полностью восстановилась. Наибо­лее уязвимым для радиации оказались яйца и ранние стадии по­стэмбрионального развития беспозвоночных. Наибольшую роль в перераспределении радиоактивных элементов по почвенному профилю играли дождевые черви.

В полевых экспериментах при внесении в черноземную почву плутония-239 через три года численность дождевых червей и ли­чинок насекомых сократилась в 2 раза, клещей — в 5—6, ногохвос­ток — в 7—8 раз; количество видов панцирных клещей уменьши­лось почти вдвое. Восстановление общей численности и видового разнообразия почвенной фауны произошло лишь через 18 лет (Биоиндикаторы и биомониторинг. — Загорск, 1991).

6.4.4. БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА ОРГАНИЗМ ЧЕЛОВЕКА

В зависимости от распределения в тканях организма различают остеотропные радионуклиды, накапливающиеся преимуществен­но в костях, — радиоизотопы стронция, кальция, бария, радия, иттрия, циркония, плутония; концентрирующиеся в печени (до 60 %) и частично в костях (до 25 %) — церий, лантан, прометий; равномерно распределяющиеся в тканях организма — тритий, уг­лерод, железо, полоний; накапливающиеся в мышцах — калий, рубидий, цезий; в селезенке и лимфатических узлах — ниобий, ру­тений. Радиоизотопы йода избирательно накапливаются в щито­видной железе, где их концентрация может быть в 100—200 раз выше, чем в других органах и тканях.

Механизм воздействия ионизирующего излучения на биологи­ческие объекты, в том числе и на человека, подразделяют на три этапа.

Первый этап.На этом физико-химическом этапе, который про­должается тысячные и миллионные доли секунды, в результате поглощения большого количества энергии излучения образуются ионизированные, активные в химическом отношении атомы и молекулы. Происходит множество радиационно-химических ре­акций, приводящих к разрыву химических связей. Вследствие первичной ионизации в воде образуются свободные радикалы (Н+, ОН- НО2- и др.). Обладая высокой химической активнос­тью, они реагируют с ферментами и тканевыми белками, окисляя или восстанавливая их, что приводит к разрушению молекул бел­ка, изменению ферментных систем, расстройству тканевого дыха­ния, т. е. к глубокому нарушению биохимических и обменных процессов в органах и тканях и накоплению токсичных для орга­низма соединений.

Второй этап.Он связан с воздействием ионизирующего излуче­ния на клетки организма и продолжается от нескольких секунд до нескольких часов. Поражаются различные структурные элементы ядер клеток, в первую очередь ДНК. Происходит повреждение хромосом, которые являются ответственными за передачу наслед­ственной информации. При этом возникают хромосомные абер­рации — поломки, перестройка и фрагментация хромосом, обус­ловливающие отдаленные онкогенные и генетические послед­ствия.

Третий этап.Этот этап характеризуется воздействием излуче­ния на организм в целом. Его первые проявления могут возникать уже через несколько минут (в зависимости от полученной дозы), усиливаться в течение нескольких месяцев и реализовываться че­рез многие годы.

Чувствительность различных органов и тканей человека к ионизирующему излучению неодинакова. Для одних тканей и клеток характерна большая радиочувствительность, для других — наоборот, большая радиоустойчивость. Наиболее чувствительны к облучению кроветворная ткань, незрелые форменные элементы крови, лимфоциты, железистый аппарат кишок, половые железы, эпителий кожи и хрусталик глаза; менее чувствительны — хряще­вая и фиброзная ткани, паренхима внутренних органов, мышцы и нервные клетки.

Радиочувствительность различных клеток варьирует в широких пределах, достигая десятикратных различий между наибольшими и наименьшими значениями повреждающих доз. Молодые клетки соединительной ткани полностью лишаются способности к вос­становлению при облучении в дозе около 40 Гр, кроветворные клетки костного мозга полностью погибают уже при дозе 6 Гр.

Поражающеедействие ионизирующего излучения.Это действие зависит от целого ряда факторов. Во-первых, оно носит строго ко­личественный характер, т. е. зависит от дозы. Во-вторых, существен­ную роль играет и характеристика мощности дозы радиационного воздействия: одно и то же количество энергии излучения, поглощен­ной клеткой, вызывает тем большее повреждение биологических структур, чем короче срок облучения. Большие дозы воздействия, растянутые во времени, вызывают существенно меньшие повреж­дения, чем те же дозы, поглощенные за короткий срок.

Таким образом, эффект облучения зависит от величины погло­щенной дозы и временного распределения ее в организме. Облучение может вызвать повреждения от незначительных, не дающих кли­нической картины, до смертельных. Однократное острое, а так­же пролонгированное, дробное или хроническое облучение уве­личивают риск отдаленных эффектов — рака и генетических нару­шений.

Оценка риска появления злокачественных опухолей в значи­тельной мере основана на результатах обследования пострадавших

при атомных бомбардировках Хиросимы и Нагасаки и подтверж­дается результатами обследований пострадавших от аварии на Чернобыльской АЭС.

Острое облучение в дозе 0,25 Гр еще не приводит к заметным изменениям в организме. При дозе 0,25—0,50 Гр наблюдаются из­менения показателей крови и другие незначительные нарушения. Доза 0,5—1 Гр вызывает более значительные изменения показате­лей крови — снижение числа лейкоцитов и тромбоцитов, измене­ние показателей обмена, иммунитета, вегетативные нарушения. Пороговой дозой, вызывающей острую лучевую болезнь, принято счи­тать 1 Гр.

Опасность внутреннего облучения обусловлена попаданием и накоплением радионуклидов в организме через продукты пита­ния. Биологические эффекты воздействия таких радиоактивных веществ аналогичны возникающим при внешнем облучении.

Длительность внутреннего и внешнего облучения тканей зави­сит от периода полураспада радионуклида (фактического ) Тф и периода его полувыведения из организма (биологического ) Тб. С учетом этих двух показателей вычисляется эффективный период Гдф, в течение которого активность радионуклида уменьшается вдвое: Тэф= ТфТ6 /(Тф + Т6). У разных радионуклидов Тэф колеб­лется от нескольких часов и суток (например, '311) до десятков лет (90Sr, 137Cs) и десятков тысяч лет (239Ри). Биологическое действие радиоактивных веществ различных химических классов избира­тельно.

Йод (I).Радиоактивные изотопы йода (1311) могут поступать в организм человека через органы пищеварения, дыхания, кожу, ра­невые и ожоговые поверхности. Поступающий в организм радио­активный йод быстро всасывается в кровь и лимфу. В течение пер­вого часа в верхнем отделе тонкого кишечника всасывается от 80 до 90 % йода. По накоплению йода органы и ткани образуют убы­вающий ряд: щитовидная железа > почки > печень > мышцы > ко­сти. Снижение уровня гормонов в организме под воздействием радиоактивного йода, их неполноценность, а также возрастающая при этом потребность в них приводят к нарушению нейроэндок-ринных коррелятивных связей в звене гипофиз — щитовидная же­леза с последующим вовлечением в процесс и других эндокринных органов. Основным путем выведения йода из организма являются почки. Из организма в целом, щитовидной железы, печени, почек, селезенки, скелета йод выводится с Т6, равным 138, 138, 7, 7, 7 и 12 сут соответственно. Меры профилактики и помощи при поступ­лении радиоактивного йода в организм заключаются в ежесуточном потреблении солей нерадиоактивного йода, г: йодида калия — 0,2, йодида натрия — 0,2, сайодина — 0,5 или тереостатиков (мерказо-лил 0,01, 6-метилтиоурацил 0,25, перхлорат калия 0,25).

Цезий (Cs).Природный цезий состоит из одного стабильного изотопа — 133Cs — и 23 радиоактивных изотопов с массовыми числами от 123 до 132 и от 134 до 144. Наибольшее значение имеет ра­диоактивный изотоп 137Cs. В 2000 г. от АЭС всех стран мира в ат­мосферу было выброшено около 22,2 • 1019 Бк 137Cs. Этот изотоп поступает в организм человека преимущественно с пищевыми продуктами (через органы дыхания попадает примерно 0,25 % его количества) и практически полностью всасывается в пищевари­тельном тракте. Примерно 80 % его откладывается в мышечной ткани, 8 % — в костях. По степени концентрирования 137Cs все ткани и органы распределяются следующим образом: мышцы > > почки > печень > кости > мозг > эритроциты > плазма крови. Около 10 % 137Cs быстро экскретируется из организма, 90 % его выводится более медленными темпами. Биологический период полувыведения этого радионуклида у взрослых колеблется от 10 до 200 сут, составляя в среднем 100 сут, поэтому содержа­ние его в организме человека практически полностью опреде­ляется его поступлением с пищевыми продуктами в течение года и, следовательно, зависит от степени загрязненности про­дуктов 137Cs. В Российской Федерации радиационная безопас­ность пищевой продукции определяется ее соответствием допу­стимым уровням удельной активности 137Cs. Допустимые уров­ни этого изотопа составляют в грибах 500 Бк/кг, поваренной соли — 300, сливочном масле, шоколаде, рыбе, овощах, сахаре, мясе —100—160, хлебе, крупах, зерне, сырах— 40—80 Бк/кг, растительном масле, молоке 40—80 Бк/л, питьевой воде — 8 Бк/л (приложение 2).

При увеличении содержания в пищевом рационе солей калия, натрия, а также воды, пищевых волокон происходит ускорение выведения 137Cs и замедление его всасывания. Эта особенность обмена позволила разработать высокоэффективные адсорбенты-протекторы, такие, как берлинская лазурь, пектиновые вещества и др., связывающие 137Cs в пищеварительном тракте и тем самым ускоряющие его выделение из организма.

Стронций(Sr). Природный стронций, как и другие радионукли­ды, состоит из смеси стабильных и нестабильных изотопов. Как аналог кальция стронций активно участвует в обмене веществ рас­тений. Относительно большое количество радиоактивного изотопа 90Sr накапливают бобовые культуры, корне- и клубнеплоды, злаки.

Радионуклид 90Sr поступает в организм через желудочно-ки­шечный тракт, легкие и кожу. Уровни всасывания стронция из желудочно-кишечного тракта колеблются от 5 до 100 %. Стронций быстро всасывается в кровь и лимфу из легких.

Важное значение при выведении стронция из желудочно-ки­шечного тракта имеет диета. Его всасывание уменьшается с повы­шением содержания в пище солей кальция и фосфора, а также при введении высоких доз тироксина.

Независимо от пути поступления в организм растворимые соеди­нения радиоктивного стронция в основном накапливается в скелете В мягких тканях задерживается менее 1 %, остальное количе­ство откладывается в костной ткани. Со временем в костях кон­центрируется большое количество стронция, располагающегося в различных слоях костной ткани, а также в зонах ее роста, что при­водит к формированию в организме участков с высокой радиоак­тивностью. Биологический период полувыведения 90Sr из орга­низма составляет от 90 до 154 сут.

Именно 90Sr в первую очередь вызывает лейкемию. В организм человека он попадает преимущественно с растительной пищей, мо­лочными продуктами и яйцами. Радиационное поражение организ­ма 90Sr увеличивается за счет его дочернего продукта иттрия — 90Y. Уже через месяц активность 90Y практически достигает равновес­ного значения и становится равной активности 90Sr. В дальнейшем она определяется периодом полураспада 90Sr. Наличие в организме пары ^Sr/^Y может вызвать поражение половых желез, гипофиза и поджелудочной железы. Допустимые уровни 90Sr в пищевых про­дуктах в соответствии с требованиями СанПиН 2.3.2.1078—01 со­ставляют в зерне, сырах, рыбе, крупах, муке, сахаре, соли 100— 140 Бк/кг, мясе, овощах, фруктах, сливочном масле, хлебе, мака­ронных изделиях — 50—80 Бк/кг, растительном масле 50—80 Бк/л, молоке — 25, питьевой воде — 8 Бк/л (см. приложение 2).

6.4.5. ТЕХНОЛОГИЧЕСКИЕ СПОСОБЫ СНИЖЕНИЯ СОДЕРЖАНИЯ РАДИОНУКЛИДОВ В ПИЩЕВОЙ ПРОДУКЦИИ

Уменьшения поступления радионуклидов в организм с пищей можно достичь путем снижения их содержания в продуктах с по­мощью различных приемов, а также использования рационов, со­держащих их в минимальном количестве.

За счет обработки пищевого сырья (тщательного мытья, чистки продуктов, отделения малоценных частей) можно удалить от 20 до 60 % радионуклидов. Так, перед мытьем некоторых овощей целе­сообразно удалять верхние, наиболее загрязненные листья (капус­та, лук репчатый и др.). Картофель и корнеплоды обязательно моют дважды: перед очисткой от кожуры и после.

Наиболее предпочтительным способом кулинарной обработки пищевого сырья в условиях повышенного загрязнения окружаю­щей среды радиоактивными веществами является варка. При от­варивании значительная часть радионуклидов переходит в отвар. Использовать отвары в пищу нецелесообразно. Для получения от­вара нужно варить продукт в воде 10 мин, а затем слить воду и продолжать варку в новой порции воды. Такой отвар уже можно использовать в пищу: например, он приемлем при приготовлении первых блюд.

Мясо перед приготовлением в течение 2 ч следует замочить в холодной воде, порезав его небольшими кусками, затем снова за- лить холодной водой и варить при слабом кипении в течение 10 мин, слить воду и в новой порции воды варить до готовности. При жарении мяса и рыбы происходит их обезвоживание и на по­верхности образуется корочка, препятствующая выведению ра­дионуклидов и других вредных веществ. Поэтому при вероятности загрязнения пищевых продуктов радиоизотопами следует отдавать предпочтение отварным мясным и рыбным блюдам, а также блю­дам, приготовленным на пару.

На выведение радионуклидов из продукта в бульон влияют со­левой состав и реакция воды. Так, выход 90Sr в бульон из кости составляет (в процентах от активности сырого продукта): при вар­ке в дистиллированной воде — 0,02; в водопроводной — 0,06; в во­допроводной с лактатом кальция — 0,18.

Питьевая вода из централизованного водопровода обычно не требует какой-либо дополнительной обработки. Необходимость дополнительной обработки питьевой воды из шахтных колодцев состоит в ее кипячении в течение 15—20 мин. Затем следует ее ох­ладить, отстоять и осторожно, не взмучивая осадка, перелить про­зрачный слой в другую посуду.

Существенного снижения содержания радионуклидов в молоч­ных продуктах можно достичь путем получения из молока жиро­вых и белковых концентратов. При переработк<



Дата добавления: 2020-10-01; просмотров: 818;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.032 сек.