ПРОМЫШЛЕННЫЕ ПРОЦЕССЫ С ИСПОЛЬЗОВАНИЕМ ИММОБИЛИЗОВАННЫХ ФЕРМЕНТОВ И КЛЕТОК


Сочетание уникальных каталитических свойств энзимов с пре­имуществами иммобилизованных ферментов и клеток как гетерогенных катализаторов позволило создать новые промышленные техноло­гические процессы. Следует отметить, что почти все они относятся к производству пищевых продуктов и лекарственных препаратов.

В настоящее время в мире разработаны следующие крупномас­штабные производства с использованием иммобилизованных фер­ментов и клеток:

1. Получение глюкозофруктозных сиропов.

2. Получение оптически активных L-аминокислот из их раце­мических

смесей.

3. Синтез L-аспарагиновой кислоты из фумарата аммония.

4. Синтез L-аланина из L-аспарагиновой кислоты.

5. Синтез L-яблочной кислоты из фумаровой кислоты.

6. Получение безлактозного молока.

7. Получение сахаров из молочной сыворотки.

8. Получение 6-аминопенициллановой кислоты.

В качестве примера рассмотрим некоторые из них.

1. Получение глюкозофруктозных сиропов.Фруктоза (фруктовый, плодовый или медовый сахар) - важнейший в физиологическом и технологическом отношении природный моносахарид. Превра­щаясь в печени и кишечнике млекопитающих в глюкозу, фрукто­за включается в пластический и энергетический обмен клетки. Она в 2,5 раза слаще глюкозы и в 1,7 раза слаще тростникового сахара (сахароза), благодаря чему фруктоза - менее калорийный пищевой продукт по сравнению с последними. В отличие от глюкозы обмен фруктозы не контролируется инсулином, поэтому фруктозный сахар может потребляться больными диабетом. Фруктоза прак­тически не вызывает кариеса зубов. В смеси с глюкозой фруктоза не кристаллизуется, поэтому широко используется для производ­ства кондитерских изделий.

Объем производства сахарозы за последние 100 лет возрос в 15 раз и составляет, по разным оценкам, 30 - 40 кг в год на человека. Однако, несмотря на явные преимущества использования фрук­тозы, первая промышленная установка для превращения глюко­зы во фруктозу с помощью иммобилизованной глюкоизомеразы была запущена лишь в 1973 г. (компания «Клинтон Корн», США). Исходным сырьем для этого процесса служит глюкоза, которую получают при гидролизе кукурузного или картофельного крахма­ла в присутствии минеральных кислот. Для конструирования про­мышленного биокатализатора глюкозоизомеразу сорбируют на пористых неорганических носителях или ионообменных смолах. Во многих случаях используют иммобилизованные клетки разно­го происхождения (Aspergillus niger, A. oryzae, Streptomyces phaeochro-mogenes, S. olivaceus, S. venezuelae).Коммерческие препараты им­мобилизованной глюкоизомеразы имеют вид гранул, шариков, волокон или аморфной массы. Наиболее эффективными биореак­торами для получения фруктозы признаны аппараты колонного типа высотой около 5 м, в которых по сравнению с реакторами перемешивания расход фермента минимален. Производительность такого реактора варьирует от 600 до 9000 кг глюкозофруктозного сиропа на 1 кг иммобилизованного фермента в зависимости от чистоты исходного сырья, а время полуинактивации катализато­ра - 20 - 50 суток. Возникающий в результате каталитического процесса глюкозофруктозный сироп содержит 42 —45 % фрукто­зы, около 51 % глюкозы, небольшое количество олигосахаридов и по сладости соответствует инвертному сахару, получаемому при гидролизе сахарозы. Эти смеси постепенно вытесняют инвертиро­ванный сахар в промышленности и медицине. Глюкозофруктозную смесь широко применяют для производства тонизирующих напитков, консервированных фруктов, кондитерских изделий, хле­ба, мороженого и пр. Экономические расчеты показали, что про­изводство глюкозофруктозных сиропов с использованием иммо­билизованной глюкоизомеразы в 1,5 раза выгоднее получения са­харозы из сахарной свеклы по традиционной технологии. Благо­даря этому обстоятельству производство глюкозофруктозных си­ропов в мире постоянно растет. Так, в 1980 г. 10 % потребляемого населением Японии сахара заменено на глюкозофруктозную смесь. В США эта доля к 2000 г. достигла 40%, а к 2010 г. более 50%.

2. Биотрансформация других углеводов.Кроме изомеризации углеводов, важную роль также играют процессы микробиологической окислительной и восстановительной трансформации углеводов. Окислительная трансформация представляет собой окисление полиолов, например, маннита во фруктозу или сорбита в сорбозу. Окисле­нию подвергаются все полиолы (полиспирты), обладающие двумя вторич­ными гидроксилами в цис-положении, прилежащими к терминальной пер­вичной спиртовой группе, причем окисляется атом углерода, смежный с терминальным. Окисление полиолов получило название кетогенной фер­ментации.

В промышленном масштабе (при использовании свободных клеток) применяются два процесса окисления полиолов: превращение глицерина в диоксиацетон и превращение D-сорбита в L-сорбозу (одна из стадий синте­за аскорбиновой кислоты).

Диоксиацетон (1.3-дигидрокси-2-пропанон) используется для обра­ботки изделий из целлюлозных волокон для придания им несминаемости, устойчивости к стирке и прочих важных эксплуатационных свойств; слож­ные эфиры диоксиацетона являются репеллентами; из диоксиацетона и аминокислот синтезируют пищевые и косметические красители; производ­ные диоксиацетона применяют как консерванты, эмульгаторы, пластифи­каторы, фунгициды; наконец, диоксиацетон широко используют в медици­не.

Для промышленного производства диоксиацетона применяется куль­тура Acetobacter suboxydans (НПО "Биолар"). Известны лабораторные ме­тоды реализации процесса с помощью иммобилизованных клеток (как А. suboxydans, так и Cluconobacter oxydans), когда иммобилизацию проводят в ПААГ или Са-альгинате.

Окисление D-сорбита в L-сорбозу в промышленных условиях также осуществляют с помощью клеток А. suboxydans или G. suboxydans. L-сор­бозу получают с 93%-ным выходом из 15-20 %-ных растворов D-сорбита в аэробных условиях.

В лабораторных условиях окисление D-сорбита в L-сорбозу проводят с помощью бактерий, иммобилизованных включением в каррагинановый гель, а также в ПААГ. Осуществлено также окисление иммобилизован­ными клетками рибита и маннита в соответствующие кетоны. Следует, од­нако, отметить существенное снижение скорости окислительных процессов при использовании иммобилизованных в гель клеток по сравнению со сво­бодными.

Восстановительная трансформация углеводов заключается в превра­щении альдоз или кетоз в полиолы. Промышленно значимым является процесс получения ксилита из ксилозы, поскольку ксилит используется в пищевой промышленности и служит заменителем сахара. Для восстанов­ления ксилозы применяют дрожжи C.utilis, которые были иммобилизованы в ПААГ.

Еще один класс реакций, касающийся углеводов и приводящий к по­лучению полезных продуктов, представляют гидролитические реакции. Важную роль играют следующие процессы: гидролиз лактозы, сахарозы, раффинозы и целлобиозы.

Гидролиз лактозы с получением глюкозы и галактозы и гидролиз са­харозы с получением глюкозы и фруктозы являются хорошими примерами биотехнологических процессов, основанных на использовании иммобили­зованных биокатализаторов, внедренных в широком масштабе. Лактоза содержится в молоке и молочной сыворотке, причем определенная часть населения не может употреблять молоко именно из-за наличия в нем лак­тозы, но усваивает (без аллергических эффектов) безлактозное молоко. Гидролиз же лактозы в молочной сыворотке, содержащей около 5% лак­тозы в жидкой и около 75% в высушенной сыворотке, открывает новые возможности получения сахаристых веществ из нетрадиционного сырья.

Следует отметить, что технология гидролиза лактозы основана на применении иммобилизованных грибных или дрожжевых ферментов b-лактозидаз, в частности опытные и опытно-промышленные установки существуют в РФ, США, Англии, Франции. Тем не менее, уже созданы и промышленные установки для гидролиза лактозы с помощью иммобилизованных клеток, обладающих b-галактозидазной активностью. Одна из них разработана фирмой “NOVO” (Дания). В ней используются клетки Bacillus sp., иммобилизованные за счет поперечной сшивки глутаровым альдегидом. В лабораторных условиях иммобилизацию проводили с помощью адсорбции на полифениленоксиде (Caldariella acidophila), включением в ПААГ, агар, волокна коллагена (Е.alcalescens, E.coli, K.lactis, L.bulgaricus), адсорбцией на полиуретанах, стекле, поликарбонате, полистироле, хитозане (K.lactis).

Инвертный сахар (почти эквивалентную смесь глюкозы и фруктозы) получают из сахарозы с помощью иммобилизованного фермента инвертазы на уровне пилотных установок в РФ и США (компания Snam Progesty). В настоящее время существуют лабораторные разработки по получению биокатализаторов в виде иммобилизованных в ПААГ, или желатине дрожжей (S.cerevisiae), не уступающие по эффективности иммобилизованным ферментам.

Раффиноза, или галактозилсахароза, является наиболее распространенным после сахарозы олигосахаридом, встречающимся в свободном виде в сахарной свекле и других растениях (при ферментативном гидролизе раффинозы образуется галактоза и сахароза). Американская компания Great Western Sugar использовала в технологии иммобилизованный биокатализатор, представляющий собой клетки Vortierella vinacea, сшитые глутаровым альдегидом, обладающие a-га­лак­то­­зидазной активностью.

Гидролиз целлобиозы осуществлен иммобилизованными в Са-альгинате микроорганизмами с целлобиазной активностью. Этот биокатализатор может быть использован, например, при реализации процессов ферментативного осахаривания целлюлозы, когда гидролизат содержит целлобиозу.

К микробным продуктам, синтезируемым в больших количествах, относятся полисахариды - декстраны, леваны, маннаны, ксантаны. Декстраны продуцируются при использовании сахарозы в качестве субстрата бактериями Leuconostoc mesenteroidis, обладающими декстрансахарозной (или транс-глюкозидазной) активностью. Молекулы декстранов построены из остатков глюкозы с a-1.6-связью, имеют небольшое количество ветвлений, частично гидрализованные декстраны с молекулярной массой 40-80 тыс. служат заменителями плазмы крови, модифицированные декстраны также используются в медицине, поперечно-сшитые декстраны (сефадексы) применяются в качестве молекулярных сит для гельфильтрации.

Ксантаны - это смолы, синтезируемые Xanthamonas campestis при анаэробном росте на глюкозной среде. Ксантаны представляют собой разветвленные полимеры, состоящие из остатков глюкозы, маннозы и глюкуроновой кислоты, некоторые из которых имеют ацетильную (СН3СО) или пируватную (СН3СОСО) группы. Ксантаны добавляют ко многим пищевым продуктам в качестве загустителей и стабилизаторов, используют как красители в текстильной промышленности и полиграфии, в производстве косметических и фармацевтических препаратов, а также при бурении нефтяных скважин в качестве добавки к буровому шламу, поскольку они обладают свойствами ПАВ.

Для получения микробных полисахаридов используют, как правило, свободные клетки, однако имеется опыт применения и иммобилизованных клеток. Иммобилизацию проводят адсорбцией на полиуретане, песке, активированном угле, силохромах. Установлено, в частности, что целесообразно осуществлять синтез полисахаридов в условиях периодической смены среды (азотсодержащей и безазотистой). Введение безазотистой среды приводит к дополнительному закреплению клеток на носителе, так что они длительное время сохраняются в адсорбированном состоянии, однако, биосинтетическая активность клеток при этом снижается. При введении в реактор азотсодержащей среды сохраняется жизнеспособность клеток и восстанавливается уровень биосинтеза. В случае биосинтеза полисахаридов иммобилизация путем адсорбции более целесообразна, чем включением в гели, однако при адсорбционной иммобилизации велика вероятность десорбции клеток и смешивания их с целевым продуктом, причем в случае полисахаридов отделение целевого продукта от клеток затруднено. Поэтому метод, основанный на периодической смене сред играет в случае биосинтеза полисахаридов важную роль.

3. Получение L-аминокислот из их рацемических смесей. Наряду с микробиологическими способами важное значение имеют химические методы промышленного получения природных амино­кислот, в том числе незаменимых. Однако в результате химических реакций, используемых для синтеза аминокислот, содержащих асим­метрические атомы углерода, с одинаковой скоростью образуются как D-, так и L-стереоизомеры, т. е. всегда возникает рацемическая смесь. Между тем в живых клетках обмену подвергаются лишь L-аминокислоты. Разделение рацемических смесей на составляющие их оптические изомеры (представляющее труднейшую задачу) яви­лось первым промышленным процессом с использованием иммо­билизованных ферментов. Этот процесс был осуществлен в Японии в 1969 г. (компания «Танабе Сейяку») с помощью аминоацилазы, иммобилизованной на ДЕАЕ-целлюлозе. В качестве исходных соедине­ний в данном превращении используют N-ацилированные произ­водные D-,L-аминокислот, получаемые с помощью химического синтеза. Вследствие своей стереоспецифичности аминоацилаза гидролизует лишь N-ацил-L-стереоизомер, отщепляя от него ацильный радикал, в результате чего растворимость образующейся L-амино­кислоты резко возрастает и ее легко можно отделить от своего анти­пода физико-химическими методами. При нагревании оставшаяся N-ацил-D-аминокислота рацемизируется, т.е. превращается в ис­ходную смесь, которая вновь подвергается воздействию фермента:

Аминоацилаза строго специфична к структуре только ацильной части субстрата, поэтому одна и та же установка с иммоби­лизованным ферментом используется для получения различных аминокислот, в том числе L-валина, L-метионина, L-фенилаланина и L-триптофана. Время полуинактивации иммобилизованного энзима составляет 65 суток; на японских предприятиях он используется без замены более 8 лет и обеспечивает снижение стоимости производства аминокислот на 40 % по сравнению с тех­нологией, где применяются свободные молекулы фермента.

4. Получение L-аспарагиновой кислоты.Аспарагиновая кислота широко употребляется в качестве пищевой добавки (подсластитель и подкислитель). Первая в мире промышленная установка для синтеза L-аспарагиновой кислоты из получаемого химичес­ким путем фумарата аммония была запущена в 1973 г. в Японии (фирма «Танабе Сейяку»); в ней использованы иммобилизован­ные в полиакриламидном геле клетки кишечной палочки Е. coli, содержащие аспартат-аммиаклиазу.

Полиакриламидный гель с иммобилизованными микробными клетками формуют в виде кубиков размером 2 - 3 мм, которыми заполняют колонку объемом 1 м3. Через колонку пропускают раствор фумарата аммония. При подкислении выходящего из ко­лонки элюата до рН 2,8 и охлаждении до 150С из него выкристаллизовывается аспарагиновая кислота в виде препарата 100 %-ой чистоты. Процесс получения аспартата полностью автоматизирован и осуществляется в непрерывном режиме. Производительность процесса - 1700 кг чистой аспарагиновой кислоты в сутки на |реактор. Иммобилизованные клетки кишечной палочки сохраня­ют активность фермента на 80 % в течение 120 дней и на 50 % в течение 600 дней работы реактора, в то время как свободные клетки — всего на протяжении 10 дней с уровнем активности 25 % от исходной. В

5. Получение L-аланина.В настоящее время основной промыш­ленный способ получения L-аланина - ферментативное декарбоксилирование L-аспарагиновой кислоты:

Процесс превращения L-аспартата в L-аланин катализируется аспартат-β-декарбоксилазой ряда микроорганизмов (Pseudomonas dacunhae, Alcaligenes faecalis, Achromobacter pestifier), иммобилизо­ванных в полиакриламидном геле, каррагинане или полиуретане. Установка, разработанная японской фирмой «Танабе Сейяку», производит этим способом 10 тонн аланина в месяц. Усовершенство­вание процесса связано с использованием в качестве сырья фума­рата аммония. В данном случае процесс получения L-аланина ста­новится двустадийным и реализуется в двух последовательно рас­положенных реакционных колонках. На первом этапе фумарат аммония превращается в L-аспарагиновую кислоту, которая без выделения из реакционной среды на втором этапе претерпевает β-декарбоксилирование с образованием аланина.

С помощью иммобилизованных клеток Serratia marcescensиз треонина и глюкозы синтезируют L-изолейцин, а с помощью им­мобилизованных клеток Corynebacterium glutamicum - L-глутаминовую кислоту из L-глюкозы; L-триптофан - из индола; L-орнитин - из L-аргинина.

Таким образом расширение производства аминокислот стало возможным благодаря изменению технологии получения промышленных биокатализаторов и снижению затрат при их производстве.

6. Получение органических кислот.Органические кислоты и их соли широко используются в пищевой, фармацевтической, текстильной, кожевенной, химической, металлургиче­ской и других отраслях промышленности, поэтому их получение является важным направлением крупнотоннажного микробиологического синтеза. Многие кислоты можно производить как химическим, так и микробиоло­гическим путем, причем первый путь более предпочтителен, когда кислоты предполагается использовать для технических нужд, второй путь - для це­лей пищевой промышленности и медицины.

Источником углерода для микроорганизмов-продуцентов органиче­ских кислот являются углеводы, органические кислоты, спирты, алканы. Кислоты часто секретируются клетками, когда рост культуры в силу опре­деленных причин тормозится и переходит в стационарную фазу.

Фактором, вызывающим прекращение роста микробных культур, может быть недостаток минеральных компонентов или витаминов. В слу­чае получения органических кислот рост культур лимитируют источником азота, используя при этом избыточное количество источника углерода (и энергии). Интенсивный синтез кислот в стационарной фазе роста после исчерпывания дефицитного компонента продолжается до тех пор, пока в среде присутствует источник углерода и пока клетки продуцента жизне­способны. Это в принципе позволяет надеяться на широкое применение им­мобилизованных клеточных препаратов для получения органических ки­слот.

Хотя свойство продуцировать ту или иную органическую кислоту широко распространено среди микроорганизмов, на практике для полу­чения кислот используют специально отобранные или мутантные высоко­продуктивные штаммы, не синтезирующие побочных продуктов. В этих случаях выходы органических кислот - по существу, монопродуктов про­цесса - являются высокими: для молочной кислоты 90, глюконовой - 90-95, уксусной - 90-98, лимонной - 85%.

В настоящее время семь органических кислот производятся в про­мышленных масштабах, причем лимонную, глюконовую, кетоглюконо­вую, итаконовую и яблочную кислоты получают только микробиологиче­ским путем, а молочную и уксусную - химическим и микробиологическим методами.

Важнейшей для промышленности органической кислотой является уксусная. Она используется при производстве волокон, фармацевтических препаратов, инсектицидов, в пищевой промышленности, как субстрат для получения аминокислот. Микробиологический способ экономически оп­равдан в случае получения пищевого уксуса (окисление этанола ацетобак­териями). Производство столового уксуса (10%-ная кислота) составляет в мире 8-10 млн. м3в год. Техническую уксусную кислоту получают химиче­ским синтезом (карбонили-рование метанола).

В зависимости от способа иммобилизации (адсорбция на буковых стружках, TiO2, ZrO2, керамике, хлопке, ионообменных смолах, включе­ние в гели каррагинана, коллагена) продуктивность процесса варьирует в пределах 60 раз, концентрация уксусной кислоты изменяется от 20 до 110 г/л, операционная стабильность иммобилизованного биокатализатора дос­тигает 270 сут. Иммобилизованные на древесной стружке ацетобактерии применяются в промышленности; ряд биокатализаторов, полученных на основе использования других способов иммобилизации, успешно испытан в установках и реакторах пилотного масштаба.

Молочная кислота - первая из органических кислот, которую начали производить путем брожения, в конце XIX века было налажено промыш­ленное производство молочной кислоты при участии молочнокислых бак­терий (Lactobacillus debrueckii, L.Leichmanii и L.bulgaricus). Молочную ки­слоту используют в качестве добавки к пищевым продуктам, сокам, эссен­циям и напиткам, как окислитель в пищевой промышленности, в гальвано­стегии, а также при производстве пластмасс, когда L(+)форму кислоты по­лимеризуют в полилактат. Следует отметить, что практически вся произво­димая в США молочная кислота синтезируется химическим путем, в Ев­ропе половину ее получают при сбраживании глюкозы L.delbrueckii. Для интенсификации процессов получения молочной кислоты проводят иссле­дования по применению иммобилизованных молочнокислых бактерий, а также по оптимизации конструкции биореакторов.

Молочнокислые бактерии были иммобилизованы путем включения в различные гели. Для получения молочной кислоты предложено использо­вать мембранный реактор, колонный реактор с полыми волокнами, ко­лонный реактор с иммобилизованными включением в Са-альгинатный гель бактериями, соединенный с электродиализной ячейкой. Имеющиеся данные позволяют рассчитывать на 50-100-кратное увеличение производи­тельности процесса. Время полужизни иммобилизованного Са-альгенат­биокатализатора на основе L.delbrueckii составляет 100 сут.

Лимонную кислоту получают из мелассы с помощью микроскопиче­ских грибов Aspergillus niger. В 2000 г. ее мировое производство составило 175 000 т. Лимонная кислота применяется как ароматизирующее средство и консервант пищевых продуктов, для очистки и шлифовки металлов (хелатирующий агент), в качестве пластификатора лакокрасочных мате­риалов. Эфиры лимонной кислоты применяются при производстве пласт­масс. В лабораторных условиях иммобилизация А.niger проводилась в ге­лях Са-альгената, каррагинана, агара, полиакриламида, путем адсорбции на полипропиленовых пленках и пластинках , включением в поперечно-сшитую глутаровым альдегидом коллагеновую мембрану. Применение иммобилизованных клеток приводит к увеличению скорости образования лимонной кислоты в несколько раз, операционная стабильность иммоби­лизованного биокатализатора достигает 30 сут.

Лимонную и изолимонную кислоты получают с помощью дрожжей Candida sp. Изолимонная кислота синтезируется и при использовании Penicillium janthinellum (некоторые виды Penicillium синтезируют диастере­омер лимонной кислоты - аллозо-Ls -изолимонную кислоту). В лаборатор­ных условиях осущест-влена иммобилизация указанных микроорганизмов в Са-альгинат и ПААГ.

Хорошие результаты по технологическому применению иммобилизо­ванных клеток продемонстрированы при получении яблочной кислоты пу­тем микробиологической трансформации фумаровой кислоты. С 1974 г. японская фирма “Танабо Сеяку” приступила к промышленному выпуску яб­лочной кислоты с использованием включенных в ПААГ мертвых клеток Brevibacterium ammoniagenes. В 1978 г. ПААГ был заменен на каррагинан, что позволило в 2,3 раза увеличить эффективность биокатализатора, а за­мена В.ammoniagenes на В.flavum еще в 2 раза увеличила его эффектив­ность. В итоге появилась возможность с помощью однократно приготов­ленной партии иммобилизованного биокатализатора получить до 100 т яб­лочной кислоты (в настоящий момент производится 180 т). Продолжитель­ность функционирования иммобилизованных в полиакриламидный гель клеток составляет около 60 суток, в геле на основе каррагинана – до 160 суток против 6 суток для свободных клеток. Конверсия фумарата (1М) - до 70%, время одного трансформационного цикла - около 5 ч.

Глюконовая кислота и ее лактон являются продуктами окисления глюкозы. Промышленное производство глюконовой кислоты с помощью А.niger было налажено еще в начале 20-х годов. Выход процессов фермен­тации (свободные клетки) с получением глюконовой кислоты равен 95%, концентрация глюкозы - 150-200 г/л.

Глюконовая кислота находит применение как моющее средство, ее соли используются в медицине, а лактон - как подкислитель в пищевой промышленности. Производные глюконовой кислоты - 2-кетоглюконовую и 5-кетоглюконовую кислоты - получают с помощью микроорганизмов Pseudomonas sp., Gluconobacter sp., Acetobacter sp., причем процесс полу­чения 2-кетоглюконовой кислоты на основе свободных клеток нашел про­мышленное применение. Из 5-кетоглюконовой кислоты в результате хими­ческой гидрогенизации образуется L-идоновая кислота, а из нее осуществ­ляется ферментативный синтез 2-кетогулоновой кислоты, являющейся по­лупродуктом для производства аскорбиновой кислоты.

Иммобилизацию микроорганизмов-продуцентов глюконовой и 2-ке­тоглюконовой кислот проводят с помощью адсорбционных методов (при использовании в качестве адсорбентов нейлонового волокна, керамики, анионообменника амберлита), а также включением в гели каррагинана, Са-альгината, коллагена, ПААГ.

Наиболее эффективны биокатализаторы, полученные методами вклю­чения в упругие гели ПААГ или Са-альгината, при их использовании были реализованы процессы превращения глюкозы, концентрацией до 200 г/л с продуктивностью до 10 г/л×ч (по глюконовой кислоте), продолжительность функционирования иммобилизованных клеток достигала 200 сут.

Итаконовую кислоту, применяющуюся при производстве пластмасс и красителей, получают с высоким выходом из глюкозы с помощью грибов А.terreus (процесс на основе свободных клеток внедрен в промышленную практику в СССР). На лабораторном уровне проводилась иммобилизация А.terreus в ПААГ, а также путем адсорбции на сетчатых дисках из порис­той нержавеющей стали. В последнем случае использовался дисковый ре­актор: концентрация итаконовой кислоты достигала 20 г/л, реактор функ­ционировал без изменения продуктивности, которая составляла до 1 г/л.ч, до 30 сут.

7. Получение антибиотиков. Применение биокатализаторов на основе иммобилизованных клеток позволило достичь больших успехов в области получения антибиотиков. Как важна область биотехнологии, связанная с синтезом антибиотиков, наглядно видно из стоимости мирового сбыта их четырех наиболее рас­пространенных групп ( пенициллинов, цефалоспоринов, тетрациклинов и эритромицинов ( имеется в виду продажа для медицины и ветеринарии): в 1978 г она составляла свыше 4 млрд. дол., в 1980 г. - около 7 млрд. дол., в 1985 г. - около 8 млрд. дол. ( объем производства превысил 60 тыс. т в год), в 2000 г. более 20 млрд. дол.

Важность и масштабы производства антибиотиков обусловлены их применением в медицине и ветеринарии как противомикробных и проти­воопухолевых препаратов. С их помощью контролируется рост растений и ведется борьба с болезнями.

Новые поколения синтетических антибиотиков представляют собой сложные по химическому строению вещества, поэтому методы получения на основе полного химического синтеза не могут конкурировать с метода­ми, в которых используются микроорганизмы. Шесть родов филаментоз­ных грибов синтезируют около тысячи различных антибиотиков, в том числе цефалоспорины и пенициллины. Два рода нефиламентозных бакте­рий синтезируют 500 видов антибиотиков, а три рода актиномицетов - около 3 000 видов. Число известных антибиотиков увеличивается на не­сколько сотен каждый год.

Начиная с середины 60-х годов исследователи перешли от поиска но­вых антибиотиков к модификации структуры уже имеющихся. Особенно это было характерно для пенициллинов и цефалоспоринов, структура которых включает b-лактамное кольцо. Химическая модификация b-лактамного кольца ("добавление" к нему какой-либо химической группы) позволяет получить новые виды антибиотиков; их называют полусинтетическими.

Ключевым полупродуктом для получения полусинтетических антибиотиков пенициллинового ряда является 6-аминопенициллановая кислота (6-АПК)

Получение 6-АПК в промышленности путем химического гидролиза бензилпенициллина сопряжено с большими трудностями в связи с крайней неустойчивостью лактамного цикла его молекулы. Так, при щелочном гидролизе бензилпенициллина выход 6-АПК составляет всего 1 %. Продуктивность этого процесса удалось значительно повысить благодаря применению для гидролиза иммобилизованных бактериальных клеток, содержащих пенициллинацилазу.

Со второй половины 70-х годов XX в. вся 6-АПК, выпускаема в СССР, и значительная часть 6-АПК, получаемая в Италии производились с помощью иммобилизованных ферментов.

На итальянских фирмах применяют фермент, иммобилизованный путем включения клеток Е. coli в волокна триацетата целлюлозы, на российских предприятиях используют бактериальные клетки, иммобилизованные в полиакриламидном геле. Переход к технологии, применяющей иммобилизованные бактериальные клетки обеспечивает высокий выход 6-АПК, составляющий 80-85%. По данным японских исследователей, время полуинактивации пенициллинацилазы, содержащейся в иммобилизованных в полиакриламидном геле бактериальных клетках, равно 42 суткам при 30°С или 17 суткам при 400С.

 

Внедрение в промышленность биокаталитической технологии производства 6-АПК привело к существенному увеличению выпуска полусинтетических пенициллинов и снижению их себестоимости.

Для получения промышленных биокатализаторов с целью трансфор­мации антибиотиков используют иммобилизацию клеток микроорганизмов путем включения в ПААГ, сшитый глутаровым альдегидом желатиновый гель, связывание с глицидилметакрилатом с помощью глутарового альде­гида. По существу при трансформации антибиотиков из всего многообразия ферментов клетки используется лишь один из них. Сохранять жизнеспо­собность клеткам при этом не обязательно, активность катализатора можно увеличивать за счет разрушения клеточных оболочек, служащих диффузионными барьерами на пути субстрата к ферменту.

Тем не менее, простота требований, предъявляемых к системе, когда при иммобилизации нет необходимости сохранять жизнеспособность кле­ток, является кажущейся. В частности, простое включение в гель клеток E.coli приводит к быстрой инактивации биокатализатора вследствие вы­мывания фермента в процессе получения геля. В связи с этим был разрабо­тан способ включения в ПААГ клеток, предварительно модифицирован­ных в растворе мономеров путем сшивки бифункциональным реагентом.

При включении клеток E.coli в гели альгината по стандартной мето­дике их содержимое конкурирует с полимером за связывание с ионами кальция. Результатом является лизис клеток, нарушение интактности кле­точных структур. Стабильность такого биокатализатора иллюстрируют катализаторы фирмы “Спофа”, полученные на основе разрушенных клеток E.coli.

Резкого повышения стабильности удается достичь после "фиксирующей" модификации поверхности клеток до их контакта с рас­твором, содержащим ионы кальция. Эта фиксация резко меняет картину ультраструктуры иммобилизованных клеток, их удается сохранить струк­турно неизмененными.

Мягкое воздействие на клетки E.coli органическими растворителями, замещающими часть воды в клетке, приводит к изменению проницаемости клеточной стенки, увеличению доступа субстрата к внутриклеточным фер­ментам и ускорению вывода продукта при одновременном сохранении це­лостности покровов клетки, и, как следствие, активность биокатализатора и его стабильность существенно возрастают. Воздействие на клетки в про­цессе выращивания (температурный фактор, химические агенты) также по­зволяет получить микроорганизмы с повышенной проницаемостью кле­точных оболочек. Активность и стабильность иммобилизованного биока­тализатора на основе таких клеток возрастает.

Для иммобилизации микроорганизмов, осуществляющих биосинтез антибиотиков, применяют разные методы - включение в ПААГ, гели Са-альгината, каррагинана, агара, коллагена, включение в полые волокна, адсорбция на цеолите, пенополиуретане, поликарбонате, нейлоне, поли­сульфоне, стали. Биосинтез антибиотиков с помощью иммобилизованных клеток не имеет пока промышленного значения, но исследования в этом направлении интенсивно развиваются.

8. Трансформация стероидов. Одна из первых работ, посвященных иммобилизованным клеткам, касалась трансформации стероидов (в ней шла речь о гидроксилировании стероида кортексолона). В настоящее время все основные энзиматические процессы, используемые в стероидной химии, осуществлены с помощью иммобилизованных клеток: 1.2-дегидрирование, 11-a- и 11-b-гидрокси-лиро­вание, стереоспецифическое 17-b-восстановление, 20-a- и 20-b-восстановле­ние, дезацетилированние, трансформация стеринов и некоторые другие. Острая необходимость применения для трансформации иммобилизованных клеток обусловлена тем, что стереотрансформирующие ферменты, особен­но гидролазы и гидрогеназы, являются весьма лабильными, их выделение и очистка затруднены. Иммобилизованные клетки могут служить в этих случаях "носителем" активных и стабильных полиферментных систем, ре­генерирующих необходимые им кофакторы.

Промышленный синтез многих лекарственных препаратов на основе стероидов стал возможен с развитием методов микробиологической трансформации. В качестве сырья для промышленных процессов исполь­зуют природные стерины, выделяемые из растений или различных органов животных.

Трансформацию стероидов осуществляют с помощью различных микроорганизмов, для иммобилизации которых предложен широкий круг методов.

 

Максимальная стабильность и активность в непрерывном (проточном) реакторе наблюдается у клеток, адсорбированном на кера­мическом носителе, в условиях периодического реактора - у клеток, вклю­ченных в ПААГ. В случае иммобилизации в ПААГ период полуинактива­ции составил 5 мес. (160 циклов трансформации) при сохранении 95%-ного превращения гидрокортизона в преднизолон. Практически во всех носите­лях (кроме каррагинана) дегидрогеназная активность сохраняется на уров­не активности свободных клеток, причем клетки в иммобилизованном со­стоянии остаются жизнеспособны.

Трансформация стероидов является одним из примеров реализован­ных в промышленности процессов, основанных на использовании иммоби­лизованных клеток.

В настоящее время интенсивно разрабатываются методы использова­ния нерастворимых микрокристаллических стероидных субстратов для им­мобилизованных клеток. В этих случаях применяют диспергирование и из­мельчение субстрата, а также превращение его в водорастворимое состоя­ние (с помощью циклодекстринов). Предложен также новый метод про­ведения реакций, как для свободных, так и для иммобилизованных клеток и в двухфазных водно-органических системах. Клетки при этом локализо­ваны в водной фазе (внутри гранул носителя) и мало подвержены воздей­ствию органического растворителя, не смешивающегося с водой.

В качестве катализатора реакции дегидрирования стероидов в среде бензола и гептана используются различные виды бактерий Nocargia sp., иммобилизованные в гидрофобном носителе. Бактерии, включенные в гидрофобные гели (уретановые полимеры), обладают большей активно­стью и стабильностью, чем находящиеся в гидрофильном окружении, что определяется характером распределения субстрата между гелем и окру­жающим растворителем.

Наконец, следует отметить еще одну возможность утилизации нерас­творимого стероидного субстрата, когда клетки и частицы субстрата од­новременно включают в гранулы геля (альгината, агара, агарозы). После осуществления цикла трансформаций гранулы геля разрушают, клетки удаляют центрифугированием и рециклизуют, а продукт (преднизолон) экстрагируют из супернатанта органическими растворителями.

9. Получение ферментов. С точки зрения применения иммобили-зованных клеток речь может идти в первую очередь о получении внеклеточных ферментов (производст



Дата добавления: 2020-10-01; просмотров: 440;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.031 сек.