ГЛАВА 2. СПЕЦИФИКА ПОЧВЫ КАК СРЕДЫ ОБИТАНИЯ МИКРООРГАНИЗМОВ
Специфика почвы как среды обитания микроорганизмов состоит в том, что это трехфазная система с очень развитой твердой поверхностью, которая соседствует с жидкой и газовой фазами. Твердые частицы и агрегаты делят почву на многочисленные частично или полностью изолированные микрозоны, в которых создаются резко отличающиеся, а часто даже противоположные условия. Клетки микробов имеют микроскопические размеры и средой их обитания является микросреда. Сотни и тысячи таких микросред сосредоточены в каждом грамме почвы. Почва - это комплекс одновременно существующих, но совершенно различных микросред. Они меняются не только в пространстве, но и во времени. Микросреда со временем часто превращается в противоположную. Например, среда с органическими остатками быстро превращается в среду, содержащую только гумус. Если учесть, что передвижение микроорганизмов в почве из-за адгезии затруднено, то оказывается, что микроорганизмы находятся в среде с очень изменчивыми условиями и неравномерным питательным режимом. После поступления в микрообъем почвы свежего органического вещества наступает длительный период, когда единственным источником питания служит гумус.
Основываясь на экспериментальных данных, можно сделать вывод о том, что в каждой почвенной микрозоне оказываются микроорганизмы, способные использовать любой питательный субстрат, причем в различных условиях, которые возникают в микрозоне, например, при различном окислительно-восстановительном потенциале, рН, температуре, потенциале почвенной влаги. Это достигается благодаря наличию в почве колоссального запаса разнообразных микроорганизмов - микробного пула. Почвы обладают по сравнению с другими субстратами самым богатым микробным генофондом. В каждый момент времени большая часть микробов находится в неактивном состоянии. Основными зонами микробной активности являются растительные, животные и микробные остатки, ризоплана и кишечный тракт почвенных животных.
Рассмотрим сначала модель строения почвы без растений и животных, рис. 13. Для примера взяты водопрочные агрегаты диаметром 2-5 мм (2000-5000 мкм). Клетки располагаются внутри агрегатов и на их поверхности в водных пленках и капиллярах различной толщины. Часть микробов разлагает органические остатки. Состав газовой фазы внутри агрегатов и в межагрегатном пространстве разный. Некоторые авторы считают, что гифы грибов в основном располагаются на поверхности агрегатов, рис.14.
Рис. 13. Строение агрегированной почвы
ПЕСОК |
ГЛИНА |
ИОНЫ МЕТАЛЛОВ |
ПЫЛЬ |
БАКТЕРИИ |
ОРГАНИЧЕСКОЕ ВЕЩЕСТВО |
ГИФЫ ГРИБОВ |
Рис. 14. Гифы грибов в агрегированной почве
Внутри агрегатов в течение длительных промежутков времени могут существовать аэробные условия. Следует учитывать, что достаточно тонкой пленки из активно метаболизирующих клеток, чтобы под ней возникли анаэробные условия. Однако в почве в среднем интенсивность размножения микроорганизмов очень низкая.
Большинство почвенных бактерий имеет объем 0,1 мкм3, споры грибов - несколько кубических микрометров и объем гиф равен десяткам, сотням и тысячам кубических микрометров, рис. 15.
Рис. 15. Основные формы и размеры почвенных микроорганизмов в люминесцентном и фазово-контрастном микроскопах. Участки клеток, светящиеся при люминесценции:
1- зеленые; 2 - красные; 3 - участки, которые не видны в люминесцентном микроскопе, но видны при фазовом контрасте; 4 - светло-зеленые
ТВЕРДАЯ ФАЗА ПОЧВЫ
Твердая фаза содержит минеральные, органические и органоминеральные составные части.
Минеральная часть почвы представлена первичными и вторичными минералами. Крупная фракция почвы - песок (частицы с диаметром от 2 до 0,02 мм) и пыль (0,02 - 0,002 мм) состоит в основном из кварца, полевых шпатов, слюд и кальцита (в случае карбонатных почв). Глинистые минералы характеризуются очень маленькими размерами элементарных частиц (<0,01 мм) пластинчатой структуры, которые несут отрицательный заряд. Наличие глинистых соединений в почве определяет ее адсорбционную способность: ионную (особенно катионную) и молекулярную.
Минеральная часть почвы в основном состоит из кислорода и кремния, затем в убывающем порядке идут алюминий, железо, кальций, калий, натрий, магний. Эти 8 элементов составляют в сумме около 99% минеральной части почв. Минеральная часть почвы наименее динамична и образует каркас для других фаз.
Органическая часть почвы – хранилище всех питательных веществ включает в себя:
1) живые органические фракции: почвенные микроорганизмы, фауну почвы, корни растений. Все это в совокупности составляет биомассу почвы;
2) неживые органические фракции, которые образуются в процессе разложения отмерших организмов, различные гумусовые соединения. Самую большую долю занимают гумусовые вещества (80-85 % от всех органических веществ).
Органическое вещество почвы – совокупность живой биомассы и органических остатков растений, животных и микроорганизмов, продуктов их метаболизма и специфических новообразованных органических веществ почвы – гумуса. Запасы биомассы биоценозов, ее структура и динамика неодинаковы в разных природных зонах. Химический состав биомассы в значительной мере определяет все последующие этапы деструкции опада и образование гумуса. Почвенный гумус – основа почвы, ее плодородия, адсорбционной способности и биологической деятельности. Реакции, происходящие с участием органических веществ многочисленны и разнообразны: они включают ионный обмен, буферность, сорбцию химических веществ, окислительно-восстановительные реакции. Содержание и состав органических соединений в почвах агроэкосистем оказывают огромное влияние практически на все свойства и функции этих почв. Особую роль при этом играют специфические почвенные органические соединения – вещества гумусовой природы.
Влияние гумусовых веществ на плодородие почв чрезвычайно многообразно. Присутствие в почве достаточного количества гумусовых веществ способствует формированию прочной структуры и обеспечивает, таким образом, благоприятный водно-воздушный режим. Гумусовые вещества придают почве буферность в отношении элементов питания растений, особенно азота. Высокий уровень микробиологической активности почв также поддерживается высоким уровнем содержания гумуса. Таким образом, гумус является важным показателем плодородия почвы.
Гумусовые вещества играют огромную роль в предотвращении или снижении поступления в растения различных загрязняющих веществ (тяжелых металлов, остаточных количеств пестицидов и т.д.). Гумус является источником поступления в почву белков, углеводов, липидов и ароматических соединений. Распад органических веществ зависит от многочисленной группы микроорганизмов, включающей бактерии, актиномицеты, грибы, обитающие в почве водоросли, беспозвоночных и позвоночных почвенных животных.
Гумусовые вещества по растворимости и способности экстрагироваться делятся на большие группы: фульвокислоты, гуминовые кислоты и гумин. Иногда выделяют особую группу гиматомелановых кислот. Точное определение гумусовых веществ затруднено. Гумусовые вещества состоят из углерода (25-60%), кислорода (30-50%), азота (1-5%) и водорода (9-25%).
Фульвокислоты – наиболее растворимая группа гумусовых соединений, обладающая высокой подвижностью, значительно более низкими молекулярными массами, чем средневзвешенные молекулярные массы гумусовых веществ в целом. Фульвокислоты – фракция органических веществ, растворимая как в кислых, так и в щелочных растворах. Содержание углерода в этих соединениях более низкое, чем у представителей других групп гумусовых веществ. Они обладают относительно более выраженными кислотными свойствами и склонностью к образованию комплексных соединений. Фульвокислотам характерна более светлая окраска, чем веществам других групп. Они преобладают в почвах подзолистого типа, красноземах, некоторых почвах тропиков, сероземах.
Гуминовые кислоты – группа темно-окрашенных гумусовых соединений, которые хорошо растворяются в щелочных растворах, но не растворяются в воде и минеральных кислотах. Гуминовые кислоты имеют в среднем более высокие молекулярные массы, повышенное содержание углерода (до 62 %), менее выраженный кислотный характер. Преобладают в черноземах, каштановых почвах, иногда в серых лесных и хорошо окультуренных дерново-подзолистых. Преобладание в составе гумуса гуминовых кислот, особенно связанных с кальцием, наиболее благоприятно сказывается на плодородии почв и составе микроорганизмов в почве.
Гумин – негидролизуемая часть гумуса. Совокупность соединений гуминовых и фульвокислот, прочно связанных с минеральной частью почв.
Гуминовые кислоты и гумины растворимы только в щелочном растворе и осаждаются при подкислении. Имеют молекулярную массу от 30000 до 50000, несущую отрицательный заряд и обладающую функцией кислот, которая обусловлена наличием карбоксильной и фенольной групп.
Органо-минеральная часть почвы подразделяется на 3 группы:
1) простые гетерополярные соли, гуматы, фульваты аммония, щелочных и щелочно-земельных металлов;
2) вторая группа – комплексно-гетерополярные соли, которые образуются при взаимодействии гуминовых кислот с поливалентными металлами: железом, алюминием, медью, цинком и никелем (металл входит в анионную часть молекул и не способен к обменным реакциям);
3) третья группа – адсорбционные органо-минеральные соединения, включающие в себя соединения, образующиеся путем сорбции гуминовых веществ. Наиболее важные их них – глинистогумусовые соединения. Они определяют структуру почвы и, следовательно, физические свойства почв, а также обладают свойствами ионной и молекулярной адсорбции.
Наличие твердой фазы в виде минеральной и органической части (десятки квадратных метров на 1 г) делает почву средой резко отличной от природных вод, где часто не хватает минеральных элементов, необходимых для развития организмов, в первую очередь, фосфора и железа. В почве же они всегда присутствуют на твердой поверхности. Микробы в почвах располагаются преимущественно на поверхности твердой фазы. Это явление называют адгезией (адсорбцией, иммобилизацией) клеток. Она играет первостепенную роль в экологии почвенных микроорганизмов. Благодаря адгезии клетки удерживаются в почвенной толще и не вымываются в грунтовые воды, остаются на поверхности корней и твердых питательных субстратов (целлюлоза, лигнин, хитин). Адгезию клеток изучают либо с помощью люминесцентной микроскопии при окрашивании почвенной суспензии акридином оранжевым и калькофлуором, либо с помощью сканирующей электронной микроскопии. Установлено, что 80-90% клеток в почве обычно находится в адгезированном состоянии. Много свободно плавающих клеток появляется в почвенном растворе только после внесения в почву легкорастворимых питательных веществ (сахара, органические кислоты), хотя каждый микроорганизм, по-видимому, имеет прикрепленную стадию, обычно предназначенную для жизнедеятельности или для сохранения, и свободную стадию, предназначенную для расселения.
Адгезия микроорганизмов зависит от:
1) особенностей микроорганизма,
2) особенностей адсорбента,
3) состава жидкой среды, в которой она осуществляется: рН, концентрации и природы катионов и других веществ.
В первом приближении можно говорить о прямо пропорциональной зависимости количества адгезированных клеток от величины поверхности почвенных частиц (таб. 1), хотя более подробное изучение показывает, что бактерии располагаются на отдельных частицах крайне неравномерно. Некоторые частицы несут очень много клеток, другие частицы того же размера почти лишены их, что обусловлено различиями в химическом составе поверхности частиц.
Таблица 1
Распределение микроорганизмов в перегнойно-глеевой и дерново-подзолистой почве по частицам разной величины
(число адгезированных клеток)
Диаметр частиц, мкм | Величина поверхности, мкм2 | Перегнойно-глеевая почва | Дерново-подзолистая почва |
1 – 2 4 – 5 10 – 12 20 – 25 40 – 50 100 – 110 400 - 500 | 0,1 0,3 1.1 5,0 7,0 14,0 53,0 |
ЖИДКАЯ ФАЗА ПОЧВЫ
Репродуктивная способность почв зависит от степени доступности элементов питания. Поставщиком веществ в почву для растений являются две фазы:
· жидкая фаза почвы, где вещества находятся в растворенном состоянии (наиболее доступные элементы);
· коллоидная фаза почвы, способная поглощать или обменивать ионы.
В связи с этим вводятся два понятия: почвенный раствор и почвенный поглощающий комплекс (ППК).
Почвенный раствор – это жидкая фаза почвы, включающая почвенную воду, растворенные в ней соли, органические и органоминеральные вещества. Для выделения почвенного раствора используются водные вытяжки, которые характеризуют содержание в почве легкорастворимых солей и наиболее легкодоступных для растений питательных элементов. В водной вытяжке в соотношении 1:5 обычно определяют: сухой (плотный) остаток, щелочность, анионный и катионный состав. В почвенном растворе присутствуют растворенные газы: СО2,О2 и др.
Почвенный поглощающий комплекс (ППК) – совокупность минеральных, органических и органоминеральных соединений высокой степени дисперсности, нерастворимых в воде и способных поглощать и обменивать поглощенные ионы. Наиболее подвижную часть обменных ионов ППК извлекают раствором KCl, менее подвижную часть – ацетатом натрия. Извлеченные из почвы солевыми растворами ионы называют обменными. При засолении почв токсичными являются ионы, извлеченные раствором хлорида калия, так как они являются наиболее подвижными и доступными для растений. В связи с этим в вытяжке раствором KCl в соотношении 1:2 определяют емкости катионного обмена (ЕКО), содержание ионов натрия, магния, кальция, калия, железа, аммония, рН солевой вытяжки, обменную и гидролитическую кислотность.
Жидкая фаза почвы (почвенный раствор) обычно располагается в капиллярах или образует пленки разной толщины. Капилляры и пленки могут быть значительно толще или тоньше клеток микроорганизмов (рис. 16). Сравнительно редко после дождей, полива или подъема уровня грунтовых вод в почве появляются большие объемы воды, которые движутся под действием сил гравитации. Для жидкой фазы почвы характерна микрозональность в отношении содержания газов, органических веществ, рН, Eh и др. На протяжении некоторого времени микрозоны могут различаться и по потенциалу влаги. Он может быть различным в течение долгого времени в разных почвенных горизонтах.
Жидкая фаза почвы всегда содержит некоторое количество минеральных, органических и органоминеральных веществ в молекулярном или коллоидном состоянии, а также растворенные газы. Однако концентрация питательных веществ в почвенном растворе обычно очень мала, и развитие микроорганизмов в объеме почвенного раствора происходит сравнительно редко.
Рис. 16. Пространственное расположение клеток бактерий (1) и различных форм воды (2) |
Они развиваются в адгезированном состоянии. Таким образом, главная функция почвенного раствора заключается в переносе веществ и обеспечении микроорганизмов водой. Снабжение питательными веществами обычно проходит два этапа: 1) перенос питательных веществ с почвенным раствором на твердую поверхность и концентрирование на ней, 2) использование адсорбированных веществ адгезированными микробными клетками.
Почвенный раствор в сотни и тысячи раз менее концентрирован по сравнению с обычно применяемыми микробиологическими питательными средами, например средой Чапека, мясопептонным бульоном или крахмало-аммиачной средой.
Необходимо иметь в виду, что в отдельных микрозонах и в естественной почве могут создаваться высокие концентрации растворенных и нерастворенных органических питательных веществ. Примером микрозон первого типа может служить ризоплана с непрерывным поступлением большого количества корневых выделений, а примером микрозон второго типа - отмерший корешок растения или погибший дождевой червь.
ГАЗОВАЯ ФАЗА ПОЧВЫ
Почва почти всегда содержит большое количество пор (10-60% объема), частично заполненных водой и газами. Состав почвенных газов, с одной стороны, определяется скоростью биохимических процессов, происходящих в почве, с другой - поступлением газов из атмосферы.
Абиотические процессы газовыделения и связывания газов на фоне перечисленных играют весьма скромную роль. Оценивая роль газов в почве, академик В.И. Вернадский (1926) писал: «Почва, взятая без газов, не есть почва. Роль почвы в истории земной коры отнюдь не соответствует тонкому слою, какой она образует на ее поверхности. Но она вполне отвечает той огромной активной энергии, которая собрана в ее живом веществе и которая способна к переносу благодаря проникающим в почву газам. Говоря о значении биохимических процессов в почвах и о значении почвы в области биосферы, мы, другими словами, скрыто указываем на первенствующую роль газов в почвенных процессах и на значение этих газов в газовом обмене земной коры».
Раскрытие роли почвенных газов шло главным образом по пути выяснения интенсивности и значения поглощения почвой кислорода и выделения углекислого газа. Другие газы изучались мало. Установлено, что эти процессы идут в огромных масштабах: потребление кислорода за 1 ч составляет 1000-4000 л/га; примерно в таких же масштабах выделяется и углекислый газ. Рассчитано, что запасов кислорода в почве в связи с интенсивностью его потребления почвенными микроорганизмами и корнями растений хватило бы всего на 12-48 ч, в некоторых почвах - на 100 ч, если бы его запас не пополнялся из атмосферы. Газообмен между воздухом и почвой идет весьма интенсивно. Обычно в пахотном горизонте за каждый час происходит почти полное обновление воздуха. Построенная модель газообмена в системе почва-атмосфера позволила определить, что главную роль в газообмене играет диффузия и подчиненную, но для некоторых условий весьма существенную, - конвекция. Конвекция в большой степени связана с разностью температуры почвы и воздуха, изменениями барометрического давления, влиянием ветра, выпадением осадков и изменением уровня грунтовой воды и верховодки.
Почвенные микроорганизмы и корни растений резко изменяют газовую фазу почвы. По газовому составу почвенный воздух в десятки и сотни раз отличается от атмосферного воздуха, причем такие различия наблюдаются несмотря на то, что, как отмечалось, почвенный и атмосферный воздух быстро обмениваются. Даже этот быстрый обмен не приводит к выравниванию содержания газов в атмосфере и почве, т.е. продукция и потребление газов в почве идут очень быстро. Градиент концентраций между почвой и атмосферой поддерживается благодаря интенсивной деятельности почвенной биоты. Почва выступает как мощный регулятор газового состава атмосферы.
Почвенный воздух содержит в 10-100 раз больше углекислоты и во много раз меньше кислорода, чем атмосферный воздух. Содержание азота несущественно отличается от атмосферного. Кроме того, почвенный воздух всегда содержит пары воды и ряд микрогазов, а также летучие органические вещества, которые в каждый данный момент, хотя и содержатся в небольших количествах, но из-за быстрого круговорота, а также сильного физиологического действия могут иметь большое значение в балансе веществ в экосистеме.
Определение интенсивности процессов газообразования и потребления газов в почве проводится двумя принципиально разными способами:
1) в природе - актуальная, естественная, природная активность,
2) в модельных опытах (чаще всего в почвенных образцах), в которых создаются оптимальные условия для протекания данного процесса (потенциальная активность). Часто при таких условиях процессы проходят в десятки, сотни и тысячи раз интенсивнее, чем в естественной среде.
Газы и летучие органические соединения только частично поступают в почву извне и в основном образуются в самой почве, причем их источником могут быть микроорганизмы, растения и животные. Наибольшее разнообразие газообразных веществ в почве образуют микроорганизмы: углекислый газ, окислы азота, азот, аммиак, сероводород, водород, метан, этан, бутан, пропан, этилен, пропилен, бутен и еще ряд газообразных углеводородов. Они проводят превращения соединений металлов.
Все газы, которые микроорганизмы способны образовывать, они могут и изменять. Благодаря соседству и многократному повторению аэробных и анаэробных микрозон, достаточно плотному расположению микроорганизмов внутри и на поверхности почвенных агрегатов, а также сложности системы пор в почве, по которым движутся газы, почва представляет собой весьма совершенную ловушку для газов (исключение составляют макрогазы, например СО2, пары воды, которых очень много и которые интенсивно не используются микроорганизмами). Можно предположить, что только небольшой части микрогазов и летучих органических веществ удается вырваться наружу в атмосферу. Поверхность пор капилляров и агрегатов заселена микроорганизмами, которые могут весьма совершенно перехватывать диффундирующие, особенно энергонесущие газы.
Дата добавления: 2020-10-01; просмотров: 1109;