ВОПРОС 1. Сцепленное наследование генов.

Большую работу по изучению наследования неаллельных генов, расположенных в паре гомологичных хромосом, выполнили американский ученый Т.Морган и его ученики. Ученые установили, что гены, расположенные в одной хромосоме, наследуются совместно, или сцеплено. Группы генов, расположенные в одной хромосоме, называют группами сцепления. Сцепленные гены расположены в хромосоме в линейном порядке. Число групп сцепления у генетически хорошо изученных объектов равно числу пар хромосом, то есть гаплоидному числу хромосом. У человека 23 пары хромосом и 23 группы сцепления, у гороха 7 пар хромосом и 7 групп сцепления и т.д.

Сцепленное наследование и явление перекреста. Рассмотрим, какие типы гамет будет производить особь, два гена которой находятся в одной хромосоме АаВЬ. Особь с таким генотипом производит два типа гамет: аЬ и АВ — в равных количествах, которые повторяют комбинацию генов в хромосоме родителя.

Было установлено, однако, что кроме таких обычных гамет возникают и другие, новые —АЬ и аВ, т.е. с новыми комбинациями генов, отличающимися от родительской гаметы. Было доказано, что причина возникновения новых гамет заключается в перекресте (кроссинговере) гомологичных хромосом. Гомологичные хромосомы в процессе мейоза перекрещиваются и обмениваются участками. В результате этого возникают качественно новые хромосомы. Частота перекреста между двумя сцепленными генами в одних случаях может быть большой, в других — менее значительной. Это зависит от расстояния между генами в хромосоме. Частота (процент) перекреста между двумя неаллельными генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Чем ближе расположены гены в хромосоме, тем теснее сцепление между ними и тем реже они разделяются при перекресте. И наоборот, чем дальше гены отстоят друг от друга, тем слабее сцепление между ними и тем чаще осуществляется перекрест. Следовательно, о расстоянии между генами в хромосоме можно судить по частоте перекреста.

Итак, сцепление генов, локализованных в одной хромосоме, не бывает абсолютным. Перекрест, происходящий между гомологичными хромосомами, постоянно осуществляет рекомбинацию генов. Т.Морган и его сотрудники показали , что, изучив явление сцепления и перекреста, можно построить карты хромосом с нанесенным на них порядком расположения генов. Карты, построенные на этом принципе, созданы для многих генетически хорошо изученных организмов: кукурузы, человека, мыши, дрожжей, гороха, пшеницы, томата, плодовой мушки дрозофилы.

Положение хромосомной теории :

1. Каждый ген имеет своё строго определённое положение в хромосоме.

2. Гены расположены в хромосоме линейно в строго определённом порядке.

3. Причиной появления особей с перекомбенированными признаками является кроссенговер.

4. Чем дальше гены друг от друга расположены в хромосоме, тем больше вероятность кроссенговера между ними.

ВОПРОС 2. ЗАДАЧА.

 

БИЛЕТ№ 22

ВОПРОС 1.

Явление сцепленного наследования изучено Т. Морганом, который установил, что материальной основой сцепления является хромосома (хромосомная теория наследственности). Суть сцепленного наследования подробно описана в учебниках, поэтому отметим только, что при анализе такого явления, как нарушение сцепления, происходящего в результате перекреста хромосом, или кроссинговера, необходимо обратить особое внимание на биологический смысл этого феномена. При перекресте хромосом происходит обмен идентичными участками между гомологичными хромосомами, а значит, возникают новые комбинации генов. Этот процесс лежит в основе комбинативной изменчивости что обусловлено различными взаимодействиями генов (как аллельных, так и неаллельных).

Обсуждая вопрос о природе изменчивости живых организмов, построим некоторую общую схему, иллюстрирующую разные формы этого явления:

Изменчивость делится на : ненаследственная ( фенотипическая или модификационная )

наследственная (генотипическая ) делится на : комбинативную

мутационную

Модификационная изменчивость - это ненаследуемое изменение признаков (фенотипа) особи в определенных пределах под действием внешних факторов. Явление модификационной изменчивости хорошо иллюстрируется опытами французских исследователей: проросток одуванчика разрезали вдоль и высаживали половинки в разных условиях - в теплице и в открытом грунте высокогорного района. К концу сезона выросли совершенно непохожие друг на друга растения. Растение, развивавшееся в теплице, было высоким с большими сочными листьями и крупным цветком, а одуванчик, выросший в горах, был приземистым с прикорневой розеткой мелких листьев и маленьким цветком. Однако семена обоих растений, посаженные в одинаковые условия, дали потомков, не отличавшихся по внешнему виду. Отсюда следует, что в ходе индивидуального развития организм может существенно изменяться под влиянием внешней среды, однако его генотип при этом остается неизменным. Следовательно, подобные фенотипические изменения не наследуются.

Изменения фенотипа под воздействием факторов внешней среды могут происходить в ограниченном диапазоне (широком или узком), который определяется генотипом. Диапазон, в пределах которого признак может варьировать, носит название нормы реакции. Так показатели, использующиеся в животноводстве - удойность коров и жирность их молока, - могут варьировать между особями, но в разных пределах (удойность имеет относительно большой

ВОПРОС 2. ЗАДАЧА.

 

 

БИЛЕТ№23

ВОПРОС 1.

Модификационная изменчивость. Разнообразие фенотипов, возникающих у организмов под влиянием условий среды, называют модификационной изменчивостью. Спектр модификационной изменчивости определяется нормой реакции. Примером модификационной изменчивости может служить изменчивость генетически сходных (идентичных) особей. Многие виды растений, например картофель, обычно размножаются вегетативно, в этом случае все потомки обладают одинаковым генотипом. Многие растения существенно отличаются по высоте, кустистости, количеству и форме клубней и другим показателям. Причина этой очень широкой модификационной изменчивости состоит в разнообразном влиянии среды, которое испытывает каждый саженец картофеля. Модификационные изменения (модификации) не связаны с изменением генов. Однако модификации могут сильно влиять на их работу, а также на активность ферментов. Хорошо известно, что при низких температурах ферменты гораздо менее активны, что не может не влиять на рост растений и микроорганизмов, развитие животных. Следовательно, действие факторов среды очень существенно для протекания многих физиологических и формообразовательных процессов. Однако эти воздействия, как правило, не влияют на свойства генов, которые передаются в следующие поколения без принципиальных изменений .Именно поэтому модификации не наследуются. Это важное обобщение сделал крупный немецкий биолог А.Вейсман.

Модификационная изменчивость встречается у всех организмов, независимо от способа размножения, видовой принадлежности и разнообразия условий окружающей среды.

В некоторых случаях модификации не имеют приспособительного значения, а, напротив, представляют собой аномалии и даже уродства. Такие модификации получили название морозов. Морфозы представляют собой результат резкого отклонения индивидуального развития организма от нормального пути. Например, обработка личинок и куколок дрозофилы высокими температурами приводит к появлению большого количества мух с измененной формой крыльев и туловища.

Статистические закономерности модификацнонной изменчивости. Если мы измерим длину и ширину листьев, взятых с одного дерева, то увидим, что размеры их варьируются в довольно широких пределах. Эта изменчивость — результат разных условий развития листьев на ветвях дерева; генотип их одинаков. Если некоторое количество листьев расположить в порядке нарастания, или убывания признака то получится ряд изменчивости данного признака, который носит название вариационного ряда, слагающегося из отдельных вариант. Варианта, следовательно, есть единичное выражение развития признака. Если мы подсчитаем число отдельных вариант в вариационном ряду, то увидим, что частота встречаемости их неодинакова. Чаще всего встречаются средние члены вариационного ряда, а к обоим концам ряда частота встречаемости будет снижаться. Чем однообразнее условия развития, тем меньше выражена модификационная изменчивость, тем короче будет вариационный ряд. Чем разнообразнее условия среды, тем шире модификационная изменчивость. Размах вариации зависит и от генотипа.

Норма реакции. Итак, признаки развиваются в результате взаимодействия генотипа и среды. Один и тот же генотип может в разных условиях среды давать разное значение признака. Пределы, в которых возможно изменение признаков у данного генотипа, называют нормой реакции.

ВОПРОС 2. ЗАДАЧА.

 

БИЛЕТ№24

ВОПРОС 1.

Мутации — это редкие, случайно возникшие стойкие изменения генотипа, затрагивающие весь геном, целые хромосомы, их части или отдельные гены. Они могут быть полезны, вредны и нейтральны для организмов.

Геномные мутации. Геномными называют мутации, приводящие к изменению числа хромосом. Наиболее распространенным типом геномных мутаций является полиплоидия — кратное изменение числа хромосом. У полиплойдных организмов гаплоидный (п) набор хромосом в клетках повторяется не 2 раза, как у диплоидов, а значительно больше —до 10-100 раз. Возникновение полиплоидов связано с нарушением митоза или мейоза. В частности, не расхождение гомологичных хромосом в мейозе приводит к формированию гамет с увеличенным числом хромосом. У диплоидных организмов в результате такого процесса могут образоваться диплоидные (2п) гаметы. Полиплоидные виды растений довольно часто обнаруживаются в природе; у животных полиплоидия редка. Некоторые полиплоидные растения характеризуются более мощным ростом, крупными размерами и другими свойствами, что делает их ценными для генетико-селекционных работ.

Хромосомные мутации — это перестройки хромосом. Структурные изменения хромосом Многие из хромосомных мутаций доступны изучению под микроскопом. Пути изменения структуры хромосом разнообразны. Участок хромосомы может удвоиться или, наоборот, выпасть, он может переместиться на другое место и т.д. Хромосомные мутации — результат отклонений в нормальном течении процессов клеточного деления. Основная причина возникновения различных хромосомных мутаций — разрывы хромосом и хроматид и воссоединения в новых сочетаниях.

Генные мутации. Генные, или точечные, мутации — наиболее часто встречающийся класс мутационных изменений. Генные мутации связаны с изменением последовательности нуклеотидов в молекуле ДНК. Они приводят к тому, что мутантный ген перестает работать, и тогда либо не образуются соответствующие РНК и белок, либо синтезируется белок с измененными свойствами, что проявляется в изменении каких-либо признаков организма. Вследствие генных мутаций образуются новые аллели. Это имеет важное эволюционное значение.

Поскольку мутации — редкие события, обычно на 10-100 тыс. экземпляров какого-либо гена, например гена гемоглобина, возникает одна новая мутация. Хотя мутационные события происходят редко, благодаря постоянству естественного мутационного процесса и накапливанию мутаций в генотипах различных организмов содержится значительное количество генных мутаций.

Генные мутации следует рассматривать как результат «ошибок» возникающих в процессе удвоения молекул ДНК. Изучение мутационного процесса показало, что изменяться (мутировать) могут все гены, контролирующее развитие любого признака организма. Большинство генных мутаций вредно для организма, но некоторые из них в определенных условиях жизни могут становиться полезными.

Генеративные и соматические мутации. Мутации могут возникать в любых клетках организма. Те из них, которые возникают в клетках половых зачатков и зрелых половых клетках, получили название генеративных. Мутации, возникающие во всех клетках тела, за исключением половых, называют соматическими.

Хотя механизмы возникновения обоих типов мутаций могут быть подобны, их вклад в наследование признаков и, следовательно, эволюционное значение совершенно различны. Соматические мутации проявляются мозаично, т.е. часть клеток данной ткани или органа отличается от остальных по каким-либо свойствам. Чем раньше в ходе индивидуального развития возникает соматическая мутация, тем большим оказывается участок тела, несущий мутантный признак (измененную окраску, форму или другое свойство). У растений, использующих бесполое или вегетативное размножение, соматические мутации могут иметь важное значение, особенно для селекции, поскольку вновь возникшая соматическая мутация может быть очень широко размножена и в этом отношении она становится подобной генеративной мутации. В ряде случаев новые сорта плодовых и ягодных растений были получены на основе использования соматических мутаций.

Основные положения мутационной теории. Основные положения мутационной теории формулируются следующим образом:

— мутации — это дискретные изменения наследственного материала;

— мутации — редкие события;

— мутации могут устойчиво передаваться из поколения в поколение;

— мутации возникают не направленно (спонтанно) и, в отличие от модификаций, не образуют непрерывных рядов изменчивости;

— мутации могут быть вредными, полезными и нейтральными.

ВОПРОС 2. ЗАДАЧА.

 

БИЛЕТ№25

ВОПРОС 1.

Селекция является одной из важнейших областей практического приложения генетики. Теоретическая база селекции — генетика. Хотя генетика и селекция являются вполне самостоятельными дисциплинами, они неразрывно связаны между собой. Управление процессами наследования, изменчивости и индивидуального развития растений и животных требует знания законов наследственности, действия гена в системе генотипа, генетического потенциала данного вида и т.д. Современная селекция как наука опирается на огромный теоретический и экспериментальный багаж, накопленный в предыдущие десятилетия. И если прежде селекционную работу мог вести человек, вооруженный опытом и знанием методов отбора, то сейчас такая работа немыслима без сознательного использования законов наследственности, которые позволяют на научной основе находить пути повышения продуктивности растений, синтезировать новые сорта.

Задачи селекции. Задача селекции состоит в создании новых и улучшении уже существующих сортов растений, пород животных и штаммов микроорганизмов. Выдающийся советский генетик и селекционер, академик Н.И.Вавилов, определяя содержание и задачи современной селекции, указывал, что для успешной работы по созданию сортов и пород следует изучать и учитывать: исходное сортовое и видовое разнообразие растений и животных; наследственную изменчивость (мутации); роль среды в развитии и проявлении изучаемых признаков; закономерности наследования при гибридизации; формы искусственного отбора, направленные на выделение и закрепление желательных признаков.

Основные направления селекции. В соответствии с требованиями, предъявляемыми к сортам различных культур, породам животных и применительно к климатическим, почвенным зонам, селекция имеет следующие ориентации:

1. на продуктивность сортов растений и пород животных;

2. на качество продукции (технические, технологические свойства, химический состав зерна — содержание белка, клейковины, жиров, отдельных незаменимых аминокислот);

3. на физиологические свойства (скороспелость, засухоустойчивость, иммунитет к заболеваниям и т.д.);

4. на создание сортов интенсивного типа, способных высокопроизводительно использовать условия высокой современной агротехники, в том числе орошения, пригодность к механизированному возделыванию и т.д.

В современной селекции используются следующие основные виды и способы получения исходного материала:

1. Естественныепопуляции. К этому виду исходного материала относятся дикорастущие формы, местные сорта культурных растений и образцы мировой коллекции сельскохозяйственных растений Всесоюзного института растениеводства имени Н.И.Вавилова.

2.Гибридныепопуляции. Различают два вида гибридных популяций: 1) внутривидовые, создаваемые в результате скрещивания сортов и форм в пределах одного вида; 2) популяции, получаемые в результате скрещивания разных видов и родов растений (межвидовые и межродовые).

3. Самоопыленные линии. У перекрестноопыляющихся растений важным новым источником исходного материала являются самоопыленные линии. Их получают путем многократного принудительного самоопыления перекрестноопыляющихся растений. Лучшие линии скрещивают между собой или с сортами для создания гетерозисных гибридов. В результате такого скрещивания образуются гибридные семена, которые используют в течение одного года. Гибриды, полученные на основе самоопыленных линий, в отличие от обычных гибридных сортов, нужно ежегодно воспроизводить.

4,Искусственные мутации и полиплоидные формы. Этот вид исходного материала создается путем воздействия на растения различными видами радиации, химическими веществами, температурой, прививками и другими мутагенными средствами.

В селекции растений важное место занимает отдаленная гибридизация — скрещивание растений разных видов или родов. В развитии метода отдаленной гибридизации и преодолении трудностей получения плодовитых гибридов (обусловленных различиями в структуре генома, негомологичностью хромосом и др.) большое значение имели работы Г.Д.Карпеченко. В опытах по получению межродового гибрида (капусты и редьки), способного к размножению, он разобрал теорию и метод совмещения геномов родительских форм, отличающихся по количеству хромосом, с помощью искусственной полиплоидии.

В современной селекции для увеличения разнообразия исходного материала все шире используется явление полиплоидии. Полиплоидией называют явление кратного увеличения набора хромосом в ядрах клеток организмов. Растения, в соматических клетках которых содержится обычный двойной набор хромосом, называются диплоидными. Если у растений набор хромосом повторяется более двух раз, они являются полиплоидными. Большинство видов пшеницы имеют 28 или 42 хромосомы и относятся к полиплоидам, хотя известны диплоидные виды с 14 хромосомами (например, однозернянка). Среди видов табака и картофеля есть виды с 24, 48 и 72 хромосомами. Полиплоидия — довольно частое явление в природе, особенно у цветковых растений (злаковых, пасленовых, сложноцветных и др.). По внешним признакам полиплоиды обычно бывают более мощными, чем диплоиды, с рослыми крепкими стеблями, крупными листьями, цветками и семенами. Это объясняется тем, что у полиплоидов клетки значительно крупнее, чем у диплоидов.

В селекционной работе для создания разнообразия исходных форм широко применяется экспериментальный мутагенез — получение мутаций под воздействием рентгеновских или ультрафиолетовых лучей, низких или высоких температур, различных химических веществ и др. Большинство мутантов отличаются пониженной жизнеспособностью или не имеют хозяйственно ценных признаков. Все же часть мутаций вызывает благоприятные изменения отдельных признаков и свойств, не снижая жизнеспособности, а иногда даже повышая ее. Встречаются мутанты, проявляющие более высокую продуктивность, чем исходные сорта. Такие формы были получены у ячменя, овса, гороха, люпина, льна, арахиса, горчицы и других культур.

Порода (сорт) – искусственно созданная в процессе селекции совокупность особей которая характеризуется определенными наследственными особенностями: высокой продуктивностью, морфологическими и физиологическими признаками.






Дата добавления: 2016-07-18; просмотров: 1870; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2021 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.018 сек.