С одним или двумя нелинейными элементами
Если схема нелинейной цепи содержит только один нелинейный элемент НЭ с заданной ВАХ, то расчет токов и напряжений в такой схеме может быть выполнен комбинированным методом в три этапа.
1-й этап. Выделяется ветвь с нелинейным элементом НЭ, а оставшаяся часть схемы заменяется эквивалентным генератором (рис. 209а). Параметры эквивалентного генератора Еэ и R0 могу быть определены аналитически любым из методов расчета линейных цепей, так как в оставшейся части схемы не содержатся более нелинейные элементы.
На 2-м этапе выполняется графический расчет эквивалентной схемы рис. 209а, как правило, методом встречного построения диаграмм. Из уравнения 2-го закона Кирхгофа для схемы рис. 209а, следует, что . Для графического решения данного уравнения проводится прямая линия по уравнению U = E - IR0 в той же системе координат, где задана диаграмма ВАХ U(I)нелинейного элемента. Положение рабочей точки n соответствует точке пересечения прямой с заданной диаграммой ВАХ U(I). Достоинство данного метода состоит в том, что не требуется графическое сложение диаграмм ВАХ отдельных элементов. В результате графического расчета определяется напряжение U и ток I нелинейного элемента.
На заключительном 3-м этапе нелинейный элемент НЭ в исходной схеме в соответствии с теоремой о компенсации заменяется идеальным источником ЭДС с E=U, направленной навстречу току I. Такая замена позволяет превратить исходную схему из нелинейной в линейную. Расчет схемы после такой замены выполняется одним из методов расчета сложных линейных цепей, в результате чего определяются все токи и напряжения в исходной схеме.
Комбинированный метод расчета может быть применен к сложной схеме с двумя и более нелинейными элементами.
Пусть сложная схема содержит два нелинейных элемента НЭ1 и НЭ2 (рис. 210а).
На 1-м этапе из сложной схемы выделяются одновременно оба нелинейных элемента (рис. 210а). Выполняется режим холостого хода одновременно для обеих ветвей (рис. 310б) и аналитическим путем определяются напряжения холостого хода Uxxab = ja - jb и Uxxcd = jc - jd. В соответствии с теоремой об эквивалентном генераторе линейная часть схемы заменяется эквивалентным генератором (активным четырехполюсником) по схеме рис. 211.
Внутренния сопротивления генератора (R1, R2, R3) рассчитываются путем свертки линейной части схемы (без источников) к эквивалентной схеме звезды.
На 2-м этапе выполняется графический расчет эквивалентной схемы (рис. 14) одним из графических методов, рассмотренных ранее, в результате графического расчета определяются токи и напряжения нелинейных элементов (U1, U2, I1, I2). На заключительном этапе определяются токи и напряжения на элементах линейной части схемы.
Если исходная схема цепи содержит три или более нелинейных элементов, то к ней так же может быть применен метод эквивалентного генератора, при этом линейная часть схемы заменяется активным шести- и более полюсником, что при большом числе нелинейных элементов не дает положительного эффекта.
Дата добавления: 2020-07-18; просмотров: 439;