Действующее значение синусоидальных ЭДС, напряжений и токов
В соответствии с выражением (3) для действующего значения синусоидального тока запишем:
.
Аналогичный результат можно получить для синусоидальных ЭДС и напряжений. Таким образом, действующие значения синусоидальных тока, ЭДС и напряжения меньше своих амплитудных значений в раз:
![]() | (10) |
Поскольку, как будет показано далее, энергетический расчет цепей переменного тока обычно проводится с использованием действующих значений величин, по аналогии с предыдущим введем понятие комплекса действующего значения
.
Литература
1. Основытеории цепей: Учеб. для вузов /Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
2. Бессонов Л.А.Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
Контрольные вопросы и задачи
1. Какой практический смысл имеет изображение синусоидальных величин с помощью векторов?
2. Какой практический смысл имеет представление синусоидальных величин с использованием комплексных чисел?
3. В чем заключаются преимущества изображения синусоидальных величин с помощью комплексов по сравнению с их векторным представлением?
4. Для заданных синусоидальных функций ЭДС и тока записать соответствующие им комплексы амплитуд и действующих значений, а также комплексы мгновенных значений.
5. На рис. 5 , а
. Определить
.
Ответ:
Теория / ТОЭ / Лекция N 4. Элементы цепи синусоидального тока. Векторные диаграммы и комплексные соотношения для них. |
1. Резистор
Идеальный резистивный элемент не обладает ни индуктивностью, ни емкостью. Если к нему приложить синусоидальное напряжение ![]()
Из (1) вытекает:
Переходя от синусоидальных функций напряжения и тока к соответствующим им комплексам: - разделим первый из них на второй: или
Полученный результат показывает, что отношение двух комплексов есть вещественная константа. Следовательно, соответствующие им векторы напряжения и тока (см. рис. 3) совпадают по направлению.
Конденсатор Идеальный емкостный элемент не обладает ни активным сопротивлением (проводимостью), ни индуктивностью. Если к нему приложить синусоидальное напряжение
Из (3) вытекает:
Введенный параметр Переходя от синусоидальных функций напряжения и тока к соответствующим им комплексам: - разделим первый из них на второй: или
3. Катушка индуктивности Идеальный индуктивный элемент не обладает ни активным сопротивлением, ни емкостью. Пусть протекающий через него ток (см. рис. 8) определяется выражением
Полученный результат показывает, что напряжение на катушке индуктивности опережает по фазе ток на Из (5) вытекает:
Введенный параметр Переходя от синусоидальных функций напряжения и тока к соответствующим комплексам: разделим первый из них на второй: или
сопротивление катушки индуктивности. Умножение на
. 4. Последовательное соединение резистивного и индуктивного элементов
Уравнению (7) можно поставить в соответствие соотношение
графически может быть представлено треугольником сопротивлений (см. рис. 14), который подобен треугольнику напряжений.
Дата добавления: 2016-06-29; просмотров: 2397; |