Частотные свойства p-n-перехода


Будем считать, что к р-n-переходу кроме постоянного прямого напряжения U приложено синусоидальное напряжение с малой амплитудой Um и частотой w. Частотные свойства p-n-перехода можно характеризовать зависимостью от часто­ты отношения амплитуд тока и напряжения, т.е. комплексной проводимостью . Для расчета проводимости формально можно использовать эк­вивалентную схему (линейную модель), приведенную на рис. 3.23,б, если уже из­вестны частотные зависимости величин ее элементов. Мы уже отмечали, что барьерная емкость от частоты не зависит, а диффузионная емкость убывает с повышением частоты. О частотной зависимости дифференциального сопротив­ления речи вообще не было.

Достаточно строгое решение задачи без привлечения модели о частотной зависимости диффузионной емкости и дифференциального сопротивления проводится на основе фундаментального уравнения полупроводниковой электроники – уравне­ния непрерывности (см. § 2.2.3).

При рассматриваемом прямом включении р-n-перехода предполагается, что в ем­кости Сд преобладает диффузионная емкость, так что , а проводимость

(3.63)

Приведем без расчета результаты, полученные для p-n-перехода с размера­ми областей, много большими соответствующих диффузионных длин носителей заряда. На низких частотах диффе­ренциальное сопротивление rД име­ет такое же значение, так и Rдиф, оп­ределенное по ВАХ. Значение диф­фузионной емкости оказывается в 2 раза меньше, чем определенное по формуле (3.61). На высоких частотах дифференциальное сопротивление rД убывает примерно обратно про­порционально (как и диффузион­ная емкость), а проводимость 1/rД соответственно растет.

За критерий «низкой» частоты бе­рутся значения от wtp<< 1 и wtn <<1, где tp и tn – времена жизни неосновных носителей в областях. За критерий «высокой» частоты берутся значения wtp>>1 и wtn>>1.

На рис. 3.24 показаны зависимости дифференциальной проводимости и диффузионной емкости от нормализованной частоты, при этом для упрощения предполагался асимметричный переход. Значения величин нормированы к низкочастотным значениям 1/Rдиф и Сдф о [4].



Дата добавления: 2016-06-29; просмотров: 2594;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.