Контакт металл - полупроводник и гетеропереходы
3.9.1. Контакты металл полупроводник
Они используются в полупроводниковой электронике либо в качестве омических (невыпрямляющих) контактов с областями полупроводниковых приборов, либо в качестве выпрямляющих контактов. Структура и свойства таких контактов зависят от взаимного расположения уровня Ферми в металле и полупроводнике. Потенциальный барьер в приконтактном слое, равный разности работ выхода металла и полупроводника (jк = jМ – jn на рис. 3.30), называют барьером Шотки, а диоды, использующие эти барьеры, – диодами Шотки или диодами с барьером Шотки (ДБШ).
Важной особенностью барьеров Шотки по сравнению с р-n-переходом является отсутствие инжекции неосновных носителей. Эти переходы «работают» на основных носителях, поэтому у них отсутствует диффузионная емкость, связанная с накоплением и рассасыванием неосновных носителей, и выше быстродействие.
Особенностью переходов с барьером Шотки является то, что их ВАХ ближе всего к экспоненциальной ВАХ идеализированного р-n-перехода, а прямое напряжение значительно меньше (примерно на 0,2 В), чем в р-n-переходах.
3.9.2. Гетеропереходы
В отличие от р-n-перехода, образованного изменением концентрации примеси в одном полупроводниковом материале (гомопереход) гетеропереходом называют переход, образованный полупроводниками различной физико-химической природы, т.е. полупроводниками с различной шириной запрещенной зоны. Примерами гетеропереходов могут быть переходы германий – кремний, германий – арсенид галлия, арсенид галлия – фосфид галлия и др.
Для получения гетеропереходов с минимальным числом дефектов на границе раздела кристаллическая решетка одного полупроводника должна с минимальными нарушениями переходить в кристаллическую решетку другого. В связи с этим полупроводники, используемые для создания гетеропереходов, должны иметь идентичные кристаллические структуры и близкие значения постоянной решетки. Гетеропереходы, образованные полупроводниками с различной шириной запрещенной зоны, возможны не только как переходы между полупроводниками р- и n-типа, но также и между полупроводниками с одним типом электропроводности: р+-р или п+-п.
Рассмотрим энергетическую (зонную) диаграмму гетероперехода между полупроводником n-типа с широкой запрещенной зоной и полупроводником р-типа с узкой запрещенной зоной (рис. 3.31). На рис. 3.31,а показаны энергетические диаграммы исходных полупроводников. За начало отсчета энергии (нуль) принята энергия электрона, находящегося в вакууме. Величины А1 и A2 обозначают термодинамические работы выхода электрона (от уровня Ферми), a и – истинные работы выхода из полупроводника в вакуум, называемые электронным сродством полупроводников (от границы зоны проводимости).
При создании контакта между двумя полупроводниками уровни Ферми совмещаются (выравниваются). Это должно (в отличие от энергетической диаграммы гомоперехода) привести к появлению разрывов в зоне проводимости и в валентной зоне , как показано на рис. 3.31,б. В зоне проводимости величина разрыва обусловлена разностью истинных работ выхода электронов из р- и n-полупроводников:
(3.64)
а в валентной зоне кроме этого – еще и неравенством значений энергии . Поэтому потенциальные барьеры для электронов и дырок будут различными: потенциальный барьер для электронов в зоне проводимости меньше, чем для дырок в валентной зоне.
При подаче прямого напряжения потенциальный барьер для электронов уменьшится и электроны из n-полупроводника инжектируются в р-полупроводник. Потенциальный барьер для дырок в р-области также уменьшится, но все же остается достаточно большим, так что инжекция дырок из р-области в n-область практически отсутствует.
В гомопереходах отношение токов инжекции дырок и электронов можно изменить, только делая различными концентрации основных носителей в областях, т.е. различными концентрации примесей. Если концентрация акцепторов в р-области много больше концентрации доноров в n-области (Nа>>Nд), то и ток инжекции дырок Iр будет много больше тока инжекции электронов In (Ip>>In). Во многих приборах, использующих р-n-переходы, например в биполярных транзисторах, требуется сильная асимметрия токов. Однако увеличению концентрации примесей (в нашем случае акцепторов) есть технологический предел, связанный с наличием предельной концентрации примесей, которую можно ввести в полупроводник («предельная растворимость»). Кроме того, с увеличением концентрации примесей одновременно появляется большое число дефектов, ухудшающих параметры р-n-перехода.
Гетеропереходы позволяют исключить эти недостатки гомоперехода и получить практически одностороннюю инжекцию носителей заряда даже при одинаковых концентрациях примесей в областях.
Дата добавления: 2016-06-29; просмотров: 2684;