Концентрация носителей заряда в равновесном состоянии полупроводника
Полупроводниками, как правило, являются твердые тела с регулярной кристаллической структурой. В твердом теле концентрация (объемная плотность) атомов велика, поэтому внешние электронные оболочки соседних атомов сильно взаимодействуют, и вместо системы дискретных энергетических уровней, характерной для одного изолированного атома, появляется система зон энергетических уровней. Эти зоны уровней называют разрешенными, а области между ними – запрещенными зонами. Верхняя разрешенная зона называется зоной проводимости, а первая под ней – валентной зоной.
В физике принята классификация твердых тел на металлы, полупроводники и диэлектрики по ширине запрещенной зоны , от значения которой зависят концентрация свободных носителей, удельное электрическое сопротивление и ток.
Ширина запрещенной зоны при абсолютной температуре Т=300 К у германия 0,66 эВ, кремния 1,12эВ и арсенида галлия 1,4 эВ.
Беспримесный (чистый) полупроводник без дефектов кристаллической структуры называют собственным полупроводником и обозначают буквой i. При температуре абсолютного нуля (T=0 К) в таком полупроводнике все энергетические уровни валентной зоны заполнены валентными электронами, а в зоне проводимости нет электронов. По мере увеличения температуры растет энергия колебательного движения атомов кристаллической решетки и увеличивается вероятность разрыва ковалентных (парных) связей атомов, приводящего к образованию свободных электронов, энергия которых соответствует уровням зоны проводимости. Отсутствие одного электрона в ковалентной связи двух соседних атомов, или «вакансия», эквивалентно образованию единичного положительного заряда, называемого дыркой.
появление одного свободного электрона сопровождается образованием одной дырки. Говорят, что идет образование (генерация) пар электрон – дырка с противоположными знаками заряда.
Если в собственный четырехвалентный кремний (или германий) ввести атом пятивалентного элемента, например фосфора (Р), то четыре из пяти валентных электронов введенного атома примеси вступят в связь с четырьмя соседними атомами Si (или Ge) и образуют устойчивую оболочку из восьми электронов, а пятый электрон оказывается слабо связанным с ядром атома примеси. Этот «лишний» электрон движется по орбите значительно большего размера и легко (при небольшой затрате энергии) отрывается от примесного атома, т.е. становится свободным. При этом неподвижный атом превращается в положительный ион. Свободные электроны «примесного» происхождения добавляются к свободным электронам исходного собственного полупроводника, поэтому электрическая проводимость полупроводника при большой концентрации примеси становится преимущественно электронной. Такие примесные полупроводники называются электронными или п-типа (от слова negative - отрицательный). Примеси, обусловливающие электронную проводимость, называют донорными.
Если в собственный полупроводник, например кремний, ввести примесный атом трехвалентного элемента, например бора (В), галлия (Ga) или алюминия (Аl), то все валентные электроны атома примеси включатся в ковалентные связи с тремя из четырех соседних атомов собственного полупроводника. Для образования устойчивой восьмиэлектронной оболочки (четыре парные связи) примесному атому не хватает одного электрона. Им может оказаться один из валентных электронов, который переходит от ближайших атомов кремния. В результате у такого атома кремния появится «вакансия», т.е. дырка, а неподвижный атом примеси превратится в ион с единичным отрицательным зарядом. Примеси, обеспечивающие получение большой концентрации дырок, называют акцепторными («захватывающие» электроны).
Отрыв электрона от донорного атома и валентного электрона от атомов исходного (собственного) полупроводника для «передачи» его акцепторному атому требует затраты некоторой энергии, называемой энергией ионизации или активизации примеси. При температуре абсолютного нуля ионизации нет, но в рабочем диапазоне температуры, включающем комнатную температуру, примесные атомы практически полностью ионизированы. Энергия ионизации доноров и акцепторов составляет несколько сотых долей электронвольта (эВ), что значительно меньше ширины запрещенной зоны . Энергетические уровни электронов донорных атомов («примесные уровни») располагаются в запрещенной зоне вблизи нижней границы («дна») зоны проводимости на расстоянии, равном энергии ионизации . Примесный уровень акцепторов находится в запрещенной зоне на небольшом расстоянии от верхней границы («потолка») валентной зоны.
В собственном полупроводнике концентрации электронов и дырок одинаковы. В примесных полупроводниках они отличаются на много порядков. Носители заряда с большей концентрацией называют основными, а с меньшей – неосновными. В полупроводнике n-типа основные носители – электроны, а в полупроводнике p-типа – дырки.
Значения концентраций свободных электронов и дырок устанавливаются (состояние равновесия) в результате действия двух противоположных процессов: процесса генерации носителей (прямой процесс) и процесса рекомбинации электронов и дырок (обратный процесс).
Рекомбинация означает, что свободный электрон восстанавливает ковалентную связь (устраняет вакансию). В состоянии равновесия скорость генерации носителей заряда равна скорости рекомбинации.
Дата добавления: 2016-06-29; просмотров: 2454;