Метод расчета концентраций


Концентрация электронов n в зоне проводимости и концентра­ция дырок р в валентной зоне могут быть представлены следующи­ми общими выражениями:

; (2.1)

; (2.2)

 

Величины и – плотности квантовых состояний, Функция в (2.1) есть вероятность того, что состояние с энергией занято электро­ном. Соответственно означает вероятность отсутствия электрона на уровне в валентной зоне, т.е. вероятность существо­вания дырки.

При квантово-механическом рассмотрении установлено, что

(2.3)

(2.4)

где h – постоянная Планка; и – эффективные массы электро­нов и дырок.

Вероятностная функция f(e) в (2.1) и (2.2) определяется по формуле

(2.5)

которая называется функцией распределения Ферми-Дирака. В этой функции k – постоянная Больцмана, Т – абсолютная температура, а – энергия уровня Ферми. Очевидно, что при . Поэ­тому формально уровнем Ферми является уровень, вероятность нахождения электрона на котором равна 0,5 (рис. 2.2). При Т > 0 К функция имеет плавный, но быстрый спад приблизительно в интер­вале значений энергии ±2 kT около уровня . При комнатной темпе­ратуре (T=300 К) kT= 0,026 эВ, т.е. ±2kT= ±0,052 эВ, что значитель­но меньше , составляющего единицы электронвольта. Вероят­ность при , и при .

Функцию распределения необходимо «привязывать» к зон­ной диаграмме полупроводника. Как правило, для этого надо знать, где находится уровень Ферми. У обычно используемых полупровод­ников находится в запрещенной зоне: в n-полупроводнике – на «расстоянии» >>2kT от дна зоны проводимости, а в р-полупроводнике – на расстоянии >> 2kTот потолка валентной зо­ны и в формуле (2.5) можно пренебречь в знаменателе единицей, т.е. функция распределения Ферми-Дирака сводится приближенно к функции распределения Максвелла-Больцмана:

(2.6)

Полупроводники, для которых справедлива функция распределе­ния Максвелла- Больцмана, называют невырожденными. Для них характерно то, что число частиц значительно меньше числа разрешен­ных состояний. Если в полупроводнике уровень Ферми дока­зывается в интервале 2kT вблизи границ зон или внутри этих зон, то следует пользоваться только функцией распределения Ферми-Дира­ка, а состояние полупроводника становится вырожденным.

(2.7)

(2.8)

Формулы (2.7) и (2.8) являются универсальными, так как приме­нимы для расчета концентраций в любых типах полупроводников: собственном (типа i) и примесных (типов п и р). Коэффициенты и следует трактовать как эффективное число состояний, располо­женных на границах зон (уровней и , которые только и входят в формулы). Значения и для кремния и германия составляют примерно 1019 см-3.

Формулы (2.7) и (2.8) следует также понимать как отражение взаи­мосвязи между концентрацией (числом носителей) и уровнем Ферми. Если известно значение , то можно вычислить концентрации п и р,соответствующие этому значению . Если же известна концентрация п (или р), то можно вычислить соответствующее ей значение . Фор­мула для в этом случае получается из (2.7) или (2.8), но значение в результате расчета, естественно, должно получиться одинаковым:

(2.9)

Одинаковый результат является следствием имеющейся связи между значениями концентраций п и р, т.е. связи между полным чис­лом носителей в зоне проводимости и валентной зоне. Рассмотрим эту связь.

Используя (2.7) и (2.8), найдем произведение концентраций:

Так как ширина запрещенной зоны

(2.10)

Применим (2.10) для собственного (чистого, беспримесного) по­лупроводника, в котором концентрация электронов и дырок одина­кова . Получим формулу

(2.11)

которую можно использовать для расчета концентраций носителей в собственном полупроводнике, не зная положения уровня Ферми:

(2.12)

или преобразования формулы (2.10) до вида

(2.13)

Смысл этого соотношения состоит в том, что увеличение кон­центрации частиц с одним знаком заряда сопровождается уменьше­нием концентрации частиц с другим знаком. Такая зависимость объ­ясняется тем, что при увеличении, например, концентрации элект­ронов п обязательно пропорционально увеличится и вероятность рекомбинации носителей, в результате чего будет пропорциональ­но убывать концентрация дырок р.

Расчет по формуле (2.12) дает следующие значения : для Ge – 2,4 1013 см-3; для Si – 1,45 1010 см-3 ; для GaAs – 1,79 106 см-3. Пре­вышение ширины запрещенной зоны кремния по сравнению с гер­манием всего в 1,12/0,66=1,7 раза привело к уменьшению концент­рации собственных носителей приблизительно в 103 раз.

 



Дата добавления: 2016-06-29; просмотров: 2303;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.