Важнейшие окислители и восстановители
Окислители – элементарные вещества.Окислителями могут быть элементарные вещества, нейтральные атомы которых способны путем присоединения электронов переходить в отрицательно заряженные ионы с электронной структурой ближайшего благородного газа.
Так, молекулы галогенов и , выполняя функцию окислителей, превращаются в отрицательно заряженные ионы и . Нейтральные атомы кислорода, серы и ее аналогов переходят в состояние окисления и т. д.
Если окисление галогенами идет в кислой среде, то продуктами восстановления галогенов являются соответствующие галогеноводородные кислоты и . При окислении в щелочной среде получаются соли этих кислот, т. е. галогениды металлов. Сера при повышенной температуре ведет себя как окислитель по отношению к водороду и к металлам. Продуктами восстановления ее являются сероводород и сульфиды металлов.
Окислители – кислородные кислоты, преимущественно высшие, и их соли.В состав окислителей обычно входят атомы элементов в высшей или в одной из боле высоких степеней окисления, например, , а также . В последних соединениях галогены находятся не в высших степенях окисления, однако они широко применяются в практике в качестве окислителей.
Азотная кислота, действуя в качестве окислителя, восстанавливается до оксидов азота. В умеренно концентрированном состоянии образуется по схеме
В концентрированном состоянии наряду с выделяется также и :
Концентрированная , действуя в качестве окислителя, восстанавливается до по схеме
При окислении двуокисью марганца, манганатом калия или перманганатом калия в кислой среде, т. е. в присутствии серной, разбавленной соляной (с концентрированной соляной кислотой эти окислители реагируют с выделением хлора), азотной или других кислот, происходит восстановление марганца до двухвалентного катиона, образующего соответствующие соли и т. д. по схемам:
В нейтральной или слабощелочной среде восстановление и сопровождается образованием двуокиси марганца:
Хромовая и двухромовая кислоты и их соли, действуя в качестве окислителей, восстанавливаются до трехвалентного катиона , образующего соответствующие соли в зависимости от прибавляемой кислоты:
Хлор и бром в кислородных кислотах и их солях, действуя в качестве окислителей, обычно переходят в отрицательно заряженные ионы и . Йод в кислородных кислотах и их солях восстанавливается до свободного йода, а при действии более сильных восстановителей – до отрицательно заряженного иона .
Окислители – ион Н+ и ионы металлов в их высшей степени окисления. В эту группу окислителей входят соединения, содержащие положительно заряженный ион Н+ (вода, кислоты и щелочи), который при взаимодействии с восстановителем переходит в элементарный водород. Ионы металлов в их высшей степени окисления, например , выполняя функцию окислителей, переходят в ионы с более низкой степенью окисления.
Восстановители – элементарные вещества. К этой группе восстановителей относятся металлы и некоторые другие элементарные вещества, как, например, водород, углерод и др., атомы которых способны терять электроны и переходить в окисленное состояние. Металлы образуют при этом соответствующие соли в зависимости от кислоты, участвующей в реакции. Такие металлы, как цинк, алюминий и некоторые другие, могут восстанавливать и в щелочной среде, поскольку эти металлы растворимы в щелочах с образованием гидроксоцинкатов, гидроксоалюминатов и т. д. Являясь сильными восстановителями, при реакции, например с некоторыми растворами азотной или серной кислоты, они способны восстановить центральные ионы этих кислот до низших степеней окисления, т. е. до или , по схемам:
Восстановители – низшие кислородные кислоты и их соли. Молекулы этих восстановителей содержат один или несколько атомов элемента в одном из его низших состояний окисления. При взаимодействии с окислителями эти атомы теряют электроны и образуют соединения, отвечающие максимальному положительному состоянию окисления данного элемента. Например,
Восстановители – положительно заряженные ионы металлов. К этой группе восстановителей относятся ионы металлов в их низшей степени окисления и способные при взаимодействии с окислителем повышать степень окисления за счет перехода электронов к окислителю.
Восстановители – отрицательно заряженные элементарные ионы.К этой группе восстановителей относятся бескислородные кислоты и их соли, а также гидриды щелочных и щелочноземельных металлов ( и др.). Молекулы этих восстановителей содержат отрицательно заряженные элементарные ионы, способные терять электроны и переходить в состояние нейтральных атомов или молекул или претерпевать дальнейшее окисление.
Окислительно-восстановительная двойственность. При наличии у элемента способности проявлять переменные степени окисления, можно говорить о крайних и промежуточных степенях окисления его. Так, азот обладает крайними степенями окисления – 3 (в , аммонийных солях и нитридах металлов) и + 5 (в азотной кислоте, ее солях и производных). Можно привести ряд соединений, в которых степень окисления азота имеет промежуточное значение между указанными крайними значениями.
Молекулы и атомы, отвечающие крайним степеням окисления, ведут себя однозначно: одни могут быть только восстановителями, другие – только окислителями. Азот в аммиаке и нитридах металлов достигает максимальной отрицательной степени окисления и не способен более к присоединению электронов. В азотной кислоте и ее солях азот достигает максимальной положительной степени окисления и не способен более терять электроны.
Если же соединение или простое вещество содержит атомы элемента в промежуточной степени окисления, то оно может вести себя двояко: оно может и приобретать, и терять электроны. В первом случае оно ведет себя как окислитель, во втором – как восстановитель. Его поведение определяется химической природой элемента-партнера, с которым оно соприкасается, условиями и характером среды, в которой протекает окислительно-восстановительная реакция.
Сера в свободном состоянии играет роль окислителя по отношению к водороду и металлам и роль восстановителя по отношению к кислороду или хлору. Водород в подавляющем большинстве случаев ведет себя как восстановитель, а по отношению к щелочным и щелочноземельным металлам – как окислитель. Азотистая кислота и нитриты являются восстановителями по отношению к сильным окислителям ( ) и окислителями по отношению к восстановителям ( ). Аналогичным образом ведет себя и перекись водорода. Йод является слабым окислителем и сам окисляется более сильными окислителями, например хлорной водой или азотной кислотой.
Большое влияние на направление окислительно-восстановительной реакции могут оказать условия, в которых она протекает.
Перекись водорода в кислой среде окисляет йод в йодноватую кислоту, а при некоторой меньшей кислотности вновь восстанавливает йодноватую кислоту до свободного йода. Гидроксиламин в кислом растворе восстанавливает сульфат железа (III) в сульфат железа (II), а в щелочном растворе окисляет гидроокись железа (II) в гидроокись железа (III). Хлор, бром и йод диспропорционируют в щелочной среде, а в кислой среде реакция протекает в обратном направлении.
Ниже приведены примеры некоторых соединений, проявляющих окислительно-восстановительную двойственность.
Азотистая кислота и нитриты, действуя в качестве восстановителей, окисляются при этом в азотную кислоту или ее соли. Действуя в качестве окислителей, они восстанавливаются при этом до NO или более низких степеней окисления азота в зависимости от характера восстановителя. Гидроксиламин восстанавливается до аммиака, а окисляется до свободного азота или до N2О. Гидразин – сильный восстановитель, но сам может восстановиться, подвергаясь действию водорода в момент выделения.
Пероксид водорода, пероксиды металлов, дисульфид водорода и дисульфиды металлов. В соединениях этого типа, т. е. и некоторых других, содержатся двухзарядные ионы и , поэтому степень окисления каждого из атомов кислорода и серы, образующих данные цепи, равна -1. В соответствии со сказанным выше эти соединения могут играть роль окислителей, действуя по схемам
В молекулярно-ионном виде схемы имеют вид
Эти же соединения могут играть и роль восстановителей
с образованием свободного кислорода или свободной серы.
Молекулярно-ионные схемы имеют вид
В зависимости от характера окислителя и условий реакции сера может подвергнуться более глубокому окислению
или по схеме
а в молекулярно-ионном виде
Говоря об окислительно-восстановительной двойственности, не следует забывать, что в некоторых случаях она может быть обусловлена различной природой отдельных составных частей молекулы. Так, соляная кислота является восстановителем за счет отрицательно заряженных ионов и окислителем за счет положительно заряженных ионов Н+. Аммиак ведет себя как восстановитель за счет отрицательно заряженного и как окислитель по отношению к щелочным металлам, с которыми образует амиды:
Поэтому такие кислоты, как и , являются как бы «двойными» окислителями. В концентрированном состоянии они окисляют главным образом за счет ионов и , а в разбавленном состоянии при взаимодействии с определенными металлами за счет Н+ – ионов.
Дата добавления: 2020-03-21; просмотров: 538;