Примесные полупроводники


В электронике часто применяют полупроводники, у которых часть атомов основного вещества в узлах кристаллической решетки замещена атомами другого вещества, валентность которого отличается от валентности основного элемента на единицу. Такие полупроводники называют примесными, они существенно отличаются от собственных механизмом образования носителей тока. Для германия и кремния чаще всего используют пятивалентные (фосфор, мышьяк) и трехвалентные (бор, индий, галлий) примеси. Примеси, валентность которых превосходит валентность основного элемента,
 
 

способствуют образованию электронной проводимости (полупроводники n-типа), а примеси, валентность которых меньше валентности основного элемента, обуславливают дырочную проводимость полупроводника (полупроводники р-типа). На рис. 8.10 и 8.11 показана молекулярная структура примесного полупроводника n - и
 
 

р-типа и соответствующая им энергетическая структура.

Один из валентных электронов мышьяка As оказывается "ненужным", он не участвует в образовании межмолекулярных связей и поэтому слабо связан с атомом мышьяка; в результате тепловых колебаний легко отрывается и переходит в междоузлие кристаллической решетки, становясь электроном проводимости. Такие примеси называют донорными. Образовавшаяся дырка малоподвижна, так как соседние электроны связи устойчивы. В энергетической структуре примесного полупроводника n-типа вблизи свободной зоны появляется донорный уровень. "Хвост" функции Ферми перекрывает донорный уровень и свободную зону. Зона проводимости обогащается электронами за счет атомов донора (As). Дырочная проводимость из-за высокого энергетического барьера отсутствует. Поэтому основными носителями тока в таком полупроводнике являются электроны.

Если же в качестве примеси использовать трехвалентный индий (акцепторная примесь), то одна из связей не может быть реализована, т.к. для этого не достает одного валентного электрона. Недостающая связь может быть заполнена в результате перехода электрона с одного из соседних атомов германия. При этом дырка перемещается к указанному атому.

В энергетической структуре в данном случае появляется дополнительный (акцепторный) уровень, расположенный рядом с валентной зоной. Уровень Ферми приходится на верхний уровень валентной зоны. При функция Ферми-Дирака в области акцепторного уровня отличается от нуля. На акцепторный уровень переходят электроны из валентной зоны. Эти электроны присоединяются к атомам акцептора, превращая их в отрицательные ионы, которые неподвижны (в виду большого энергетического барьера). В атоме германия (в валентной зоне) образуются дырки - носители тока.




Дата добавления: 2016-06-22; просмотров: 1454;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.