Полупроводники. Собственная и примесная проводимость полупроводников. Полупроводниковые приборы


План ответа

1. Определение. 2. Собственная проводимость. 3. Донорная проводимость. 4. Акцепторная проводи­мость. 5. р-п переход. 6. Полупроводниковые прибо­ры. 7. Применение полупроводников.

Полупроводники — это вещества, удельное со­противление которых убывает с повышением темпе­ратуры, наличия примесей, изменения освещен­ности. По этим свойствам они разительно отличают­ся от металлов. Обычно к полупроводникам относят­ся кристаллы, в которых для освобождения электро­на требуется энергия не более 1,5 — 2 эВ. Типичны­ми полупроводниками являются кристаллы герма­ния и кремния, в которых атомы объединены ковалентной связью. Природа этой связи позволяет объ­яснить указанные выше характерные свойства. При нагревании полупроводников их атомы ионизируют­ся. Освободившиеся электроны не могут быть захва­чены соседними атомами, так как все их валентные связи насыщены. Свободные электроны под действи­ем внешнего электрического поля могут перемещать­ся в кристалле, создавая ток проводимости. Удаление электрона с внешней оболочки одного из атомов в кристаллической решетке приводит к образованию положительного иона. Этот ион может нейтрализо­ваться, захватив электрон. Далее, в результате пере-­

ходов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле мес­та с недостающим электроном. Внешне этот процесс хаотического перемещения воспринимается как пе­ремещение положительного заряда, называемого «дыркой». При помещении кристалла в электриче­ское поле возникает упорядоченное движение «ды­рок» — ток дырочной проводимости.

В идеальном кристалле ток создается равным количеством электронов и «дырок». Такой тип про­водимости называют собственной проводимостью полупроводников. При повышении температуры (или освещенности) собственная проводимость проводни­ков увеличивается.

На проводимость полупроводников большое влияние оказывают примеси. Примеси бывают до-норные и акцепторные.Донорная примесь — это примесь с большей валентностью. При добавлении донорной примеси в полупроводнике образуются лишние электроны. Проводимость станет электрон­ной, а полупроводник называют полупроводником n-типа. Например, для кремния с валентностью п = 4 донорной примесью является мышьяк с валент­ностью п = 5. Каждый атом примеси мышьяка при­ведет к образованию одного электрона проводимости.

Акцепторная примесь — это примесь с мень­шей валентностью. При добавлении такой примеси в полупроводнике образуется лишнее количество «ды­рок». Проводимость будет «дырочной», а полупро­водник называют полупроводником p-типа. Напри­мер, для кремния акцепторной примесью является индий с валентностью n = 3. Каждый атом индия приведет к образованию лишней «дырки».

Принцип действия большинства полупровод­никовых приборов основан на свойствах р-п перехо­да. При приведении в контакт двух полупроводнико­вых приборов р-типа и n-типа в месте контакта на­чинается диффузия электронов из n-области в p-область, а «дырок» — наоборот, из р- в n-область. Этот процесс будет не бесконечный во времени, так как образуется запирающий слой, который будет препятствовать дальнейшей диффузии электронов и «дырок».

р-п контакт полупроводников, подобно ваку­умному диоду, обладает односторонней проводи­мостью: если к р-области подключить «+» источника тока, а к n-области «-» источника тока, то запираю­щий слой разрушится и р-п контакт будет проводить ток, электроны из области n- пойдут в р-область, а «дырки» из p-области в n-область (рис. 23). В первом случае ток не равен нулю, во втором ток равен нулю. Т. е., если к p-области под­ключить «-» источника, а к n-области — «+» источника то­ка, то запирающий слой рас­ширится и тока не будет.

Полупроводниковый диод состоит из контакта двух полупроводников р- и n-типа. Достоин­ством полупроводникового диода являются малые размеры и масса, длительный срок службы, высокая механическая прочность, высокий коэффициент по­лезного действия, а недостатком — зависимость их сопротивления от температуры.

В радиоэлектронике применяется также еще один полупроводниковый прибор: транзистор, кото­рый был изобретен в 1948 г. В основе триода лежит не один, а два р-п перехода. Основное применение транзистора — это использование его в качестве уси­лителя слабых сигналов по току и напряжению, а полупроводниковый диод применяется в качестве выпрямителя тока. После открытия транзистора на­ступил качественно новый этап развития электрони­ки — микроэлектроники, поднявший на качественно иную ступень развитие электронной техники, систем связи, автоматики. Микроэлектроника занимается разработкой интегральных микросхем и принципов их применения.Интегральной микросхемой назы­вают совокупность большого числа взаимосвязанных компонентов — транзисторов, диодов, резисторов, со­единительных проводов, изготовленных в едином технологическом процессе. В результате этого про­цесса на одном кристалле одновременно создается несколько тысяч транзисторов, конденсаторов, ре­зисторов и диодов, до 3500. Размеры отдельных эле­ментов микросхемы могут быть 2—5 мкм, погреш­ность при их нанесении не должна превышать 0,2 мкм. Микропроцессор современной ЭВМ, разме­щенный на кристалле кремния размером 6х6 мм, содержит несколько десятков или даже сотен тысяч транзисторов.

Однако в технике применяются также полу­проводниковые приборы без р-п перехода. Например, терморезисторы (для измерения температуры), фото­резисторы (в фотореле, аварийных выключателях, в дистанционных управлениях телевизорами и видео­магнитофонами).

Билет № 18

 



Дата добавления: 2016-06-05; просмотров: 3236;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2025 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.