Классификация автоматических систем управления и регулирования (АСР и У)


Основные понятия и определения теории управления

Нормальный ход различных технологических и производственных процессов может быть обеспечен лишь тогда, когда те или иные величины, которые характеризуют эти процессы, удовлетворяют определенным условиям

Так, например, при холодной прокатке металла толщина прокатываемой полосы должна находиться в заданных пределах. Производство химических продуктов требует постоянства количества и, например, концентрации их компонентов. При термической обработке изделий нужно, чтобы температура печи изменялась по определенному закону с течением времени, и т. п.

Необходимость поддержания постоянства той или иной величины или изменения ее в соответствии с каким-либо законом возникает в самых разнообразных отраслях техники. В энергосистемах должно поддерживаться постоянство напряжения и частоты, активной и реактивной мощности и т. д. Сами по себе объекты, в которых протекают те или иные рабочие процессы, часто не обеспечивают их нормального хода, иначе, сами по себе объекты не могут устранить отклонения режима от заданного, вызываемого различными причинами. Поэтому такие объекты снабжаются управляющим или регулирующим органом, воздействием на который можно изменить режим их работы, а значит, нужным образом управлять процессом.

Создание условий, обеспечивающих требуемое протекание процесса, т. е. поддержание необходимого режима, называется управлением.

Управление может быть ручным или автоматическим. При ручном управлении воздействие на управляющий орган осуществляет человек, наблюдающий за ходом процесса или, точнее говоря, за отклонением процесса от требуемого и воздействующий в зависимости от этого отклонения на управляющий орган так, чтобы процесс удовлетворял заданным требованиям.

При автоматическом управлении воздействие на управляющий орган осуществляет специальное управляющее устройство. В частности, когда необходимый режим состоит в поддержании постоянства тех или иных величин, характеризующих рабочий процесс, то говорят о регулировании. В этом случае управляющее устройство называют автоматическим регулятором.

Целенаправленные процессы, выполняемые человеком для удовлетворения различных потребностей, представляют собой организованную совокупность действий — операций, которые делят на два класса: рабочие операции и операции управления. К рабочим операциям относят действия, непосредственно необходимые для выполнения процесса в соответствии с теми природными законами, которыми определяется ход процесса, например снятие стружки при обработке детали на станке, вращение вала двигателя и т. п. Замену труда человека в рабочих операциях называют механизацией, цель которой—освобождение человека от тяжелых операций, требующих больших затрат физической энергии (земляные работы, подъем грузов); во вредных операциях (химические, радиоактивные процессы); в однообразных, утомительных для нервной системы операциях (завинчивание однотипных винтов при сборке, заполнение большого количества типовых документов, выполнение большого объема стандартных вычислений и т. п.).

Для правильного и высококачественного выполнения рабочих операций их необходимо направлять действиями другого рода — операциями управления, которые обеспечивают в нужные моменты времени начало, порядок следования и прекращение отдельных операций, обеспечивают выделение необходимых для их выполнения ресурсов, задают нужные параметры самому процессу: направление, скорость, ускорение рабочего инструмента, температуру, концентрацию в химическом процессе и т. д. Совокупность управляющих операций образует процесс управления.

Операции управления также частично или полностью могут выполнять технические устройства. Замену труда человека в операциях управления называют автоматизацией, а технические устройства, выполняющие операции управления — автоматическими устройствами. Совокупность технических средств — машин, орудий труда, средств механизации, выполняющих данный процесс, — с точки зрения управления, является объектом управления. Совокупность средств управления и объекта образует систему управления. Систему, в которой все рабочие и управляющие операции выполняют автоматические устройства, называют автоматической системой. Систему, в которой автоматизирована только часть операций, другая же их часть (обычно наиболее ответственная) сохраняется за людьми, называют автоматизированной (частично автоматической) системой.

Объектами и операциями управления охватываются технические процессы и агрегаты, группы агрегатов, цехи, предприятия, людские коллективы и организации и т. д.

Всякий технический процесс характеризуется совокупностью физических величин, называемых показателями, координатами, а иногда параметрами процесса. Будем избегать термина «параметр» в этом смысле, так как им обычно обозначают физические константы самих устройств. Для осуществления управления и построения управляемых систем нужны знания двоякого вида: во-первых, конкретные знания данного процесса, его технологии и, во-вторых, знание принципов и методов управления, общих для самых разнообразных объектов и процессов. Конкретные, специальные знания дают возможность установить, что и как следует изменять в системе, чтобы получить требуемый результат. Будем считать, что все это задано технологами, и будем изучать, абстрагируясь от частных свойств, только общие законы и методы управления и способы их реализации.

При автоматизации возникает необходимость в различных видах операций управления. К одному из видов относятся операции начала (включения), прекращения (отключения) данной операции и перехода от одной

Рисунок 1.1 – Объект регулирования и координаты объекта

 

операции к другой (переключения). Различные аспекты этих видов операций рассматриваются в теории переключающих устройств и отчасти в теории расписаний, составляющих предмет других курсов.

Другая группа операций связана с контролем за координатами с целью установления, не вышли ли они за допустимые границы. Эта группа операций состоит в измерении значений координат и выдаче результатов измерения в удобной для человека-оператора форме. Операции этой группы рассматриваются в теории автоматического контроля.

 

Классификация автоматических систем управления и регулирования (АСР и У)

Следящие системы

В следящих системах алгоритм функционирования заранее не известен. Обычно регулируемая величина в таких системах должна воспроизводить изменение некоторого внешнего фактора, следить за ним. Так, автоматически управляемые зенитное орудие должно поворачиваться следя за полетом цели. Следящая система может быть выполнена в соответствии с любым фундаментальным принципом управления и будет отличаться от соответствующей системы программного управления тем, что вместо датчика программы в ней будет помещено устройство слежения за изменениями внешнего фактора.

Системы с поиском экстремума показателя качества

В ряде процессов показатель качества или эффективности процесса может быть выражен в каждый момент времени функцией текущих координат системы, и управление можно считать оптимальным, если оно обеспечивает поддержание этого показателя в точке максимума, например настройку радиоприемника на частоту передающей станции по наибольшей громкости приема или по наибольшей яркости свечения индикаторной лампы. Такое управление обладает одной нежелательной особенностью: когда точка настройки под воздействием различных возмущении окажется смещенной от экстремума, неизвестно, в каком направлении следует воздействовать на регулирующий орган, чтобы вернуть ее к экстремуму. Поэтому экстремальное управление начинают с поиска: сначала выполняют небольшие пробные движения в каком-то выбранном направлении, затем анализируют реакцию системы на эти пробы и после этого по результатам анализа вырабатывают управляющее воздействие в виде импульса, приближающего систему к экстремуму.

 

Рисунок 2.3 – Структурная схема системы с поиском экстремума показателя качества

 

УПВ - Устройство пробных воздействий

ИПЭ - Измерительно-преобразующий элемент

ВУ - вычислительное устройство

 

На рисунке 2.3 приведена функциональная схема экстремального регулирования с поиском. Измерительно-преобразующий элемент ИПЭ, измеряющий координаты процесса и вычисляющий показатель качества J = F1 (x1, x2 ..., хn) подключен к выходу объекта О. Устройство пробных воздействий УПВ генерирует пробные воздействия v1, v2, …vn на систему регулирующих органов РО. Логическое устройство ЛУ, получая информацию как о введенных пробных воздействиях, так и об изменении J под их влиянием, анализирует полученные данные и результат сообщает вычислительному устройству ВУ, которое вырабатывает управляющие воздействия u1, u2, …un.

Для поиска экстремума необходим чувствительный элемент, обнаруживающий экстремум. Один из способов обнаружения экстремума функции одной переменной у = f(х) состоит в измерении производной dy/dxi

Прямой метод измерения dy/dx часто трудно реализуем, поэтому используют и другие методы обнаружения экстремума: релейные и шаговые схемы с логическими элементами для анализа знаков, способы «запоминания экстремума», точнее— наибольшего (или наименьшего) из ряда наблюдений в процессе поиска значений, и с ним сравниваются последующие.

Оптимальное управление

Оптимальное управление в последние годы начали применять как в технических системах для повышения эффективности производственных процессов, так и в системах организационного управления для совершенствования деятельности предприятий, организаций, отраслей народного хозяйства.

В организационных системах обычно интересуются конечным, установившимся результатом команды, не исследуя эффективность во время

 

Рисунок 2.4 – Структурная схема системы оптимального управления

 

переходного процесса между отдачей команды и получением окончательного результата. Объясняется это тем, что обычно в таких системах потери в переходном процессе достаточно малы и влияют несущественно на общую величину выигрыша в установившемся режиме, поскольку сам установившийся режим значительно более длителен, чем переходный процесс. Но иногда динамика не исследуется из-за математических трудностей. Методам оптимизации конечных состояний в организационных и экономических системах посвящены курсы методов оптимизации и исследования операций.

В управлении динамическими техническими системами оптимизация часто существенна именно для переходных процессов, в которых показатель эффективности зависит не только от текущих значений координат (как в экстремальном управлении), но и от характера изменения о прошлом, настоящем и будущем, и выражается некоторым функционалом от координат, их производных и, может быть, времени.

В качестве примера можно привести управление бегом спортсмена на дистанции. Так как его запас энергии ограничен физиологическими факторами, а расходование запаса зависит от характера бега, спортсмен уже не может в каждый момент отдавать максимум возможной мощности, чтобы не израсходовать запас энергии преждевременно и не выдохнуться на дистанции, а должен искать оптимальный для своих особенностей режим бега.

Нахождение оптимального управления в подобных динамических задачах требует решения в процессе управления достаточно сложной математической задачи методами вариационного исчисления или математического программирования в зависимости от вида математического описания (математической модели) системы. Таким образом, органической составной частью системы оптимального управления становится счетно-решающее устройство или вычислительная машина. Принцип поясняется на рисунке 2.4. На вход вычислительного устройства (машины) ВМ поступает информация о текущих значениях координат х с выхода объекта О, об управлениях и с его входа, о внешних воздействиях z на объект, а также задание извне различных условий: значение критерия оптимальности J, граничных условий х(0), х (¥), информация о допустимых значениях х и u т. п. Вычислительное устройство по заложенной в него программе вычисляет оптимальное управление и. Оптимальные системы могут быть как разомкнутыми, так и замкнутыми.

Адаптивные системы

В реальных условиях внешние возмущения иногда приводят к изменению не только координат, но и параметров системы (коэффициентов уравнений), причем в таких системах, как баллистические ракеты, изменения параметров существенны. Изменения параметров, вышедшие за определенные границы, приводят не только к количественным ошибкам или к ухудшению других показателей качества системы, но зачастую и к полной потере ее работоспособности. Эти потери качества часто невозможно устранить, находясь в рамках первоначально принятого фундаментального принципа управления, это можно сделать лишь путем изменения параметров (а иногда и структуры) системы так, чтобы приблизить математическое описание претерпевшей изменения системы к ее исходной модели настолько, чтобы сохранить работоспособность первоначально принятого фундаментального принципа управления.

Системы, автоматически изменяющие значение своих параметров или структур при непредвиденных изменениях внешних условий на основании анализа состояния или поведения системы так. чтобы сохранялось заданное качество ее работы, называют адаптивными системами (от лат. adaptio — приспособление). Термин заимствован из биологии, где адаптацией называют приспособление организма к изменяющейся среде с целью сохранения жизнедеятельности. Но в теории управления (так как любая автоматическая система в каком-то смысле приспосабливается к изменениям среды) понятие адаптации умышленно сужено: к ней относят лишь такие виды приспособления, которые осуществляются путем изменения управляющим устройством параметров или структуры системы по данным анализа ее работы.

Адаптивные системы с изменением значений параметров иногда называют самонастраивающимися, а системы с изменением структуры и алгоритма управления — самоорганизующимися.

Обычно адаптивная система содержит в качестве «ядра» схему, реализующую один из фундаментальных принципов управления, а контур адаптации пристраивают к ней как вторичный, осуществляющий коррекцию параметров. Контур адаптации, обычно состоящий из устройства измерения ИУ, вычисления ВУ и управления УУ, может быть разомкнут (рисунок 2.5, а), если на его вход подается только входное воздействие,

 


Рисунок 2.5 – Структурная схема адаптивной системы

 

или замкнут (рисунок 2.5, б), если он реагирует также и на выход системы. Контур самонастройки воздействует на блок настройки параметров БНП, который может быть включен не только последовательно, как показано на рисунке, но и любым другим способом, например в цепь обратной связи.

Вычисление воздействий для коррекции параметров — весьма сложная математическая задача, поэтому в составе адаптивных систем используют различные моделирующие, счетно-решающие устройства и даже вычислительные машины. Способы адаптации и соответствующие им схемы различаются главным образом алгоритмами и реализующими их программами ЭВМ.



Дата добавления: 2022-07-20; просмотров: 100;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.013 сек.