Производная функции


Пусть y = f(x) есть непрерывная функция аргумента x, определенная в промежутке (a, b), и пусть x – какая-то точка этого промежутка. Дадим аргументу приращение Dx, тогда функция получит приращение, равное Dy = f(x + Dx) – f(x). Если функция непрерывная и приращение аргумента бесконечно малая величина, то приращение функции тоже бесконечно малая величина.

Предел, к которому стремится отношение при Dx® 0, называется производной функции:

.

þ Обозначение: f¢(x) («эф штрих икс»), («игрек штрих»)

! Примеры производных линейной функции y = x и квадратичной функции y = x2.

.

.

Производная степенной функции равна произведению степени на степенную функцию, у которой показатель на единицу меньше:

. (1)

Производные функций y = x, y = x2 являются частными случаями формулы (1), при n = 1; 2. Производные 1¢ = 0, , , тоже являются частными случаями формулы (1), при n = 0; ½; 3; 1.

! Пример: Производная тригонометрической функции y = sinx равна

. (2)

Таким же образом находится производная функции cosx:

(cosx)¢ = – sinx. (3)

! Пример: Производная экспоненциальной функции y = ex равна

. (4)



Дата добавления: 2016-06-15; просмотров: 1820;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.