Интегрирование линейных неоднородных дифференциальных уравнений
Интегрирование линейных однородных дифференциальных уравнений.
Пусть в линейном однородном дифференциальном уравнении
коэффициенты – постоянные числа. Для таких уравнений доказано, что частные решения , , составляющие фундаментальную систему решений, следует искать в виде , где – корень характеристического уравнения.
Определение 1
Характеристическим уравнением линейного однородного дифференциального уравнения называется алгебраическое уравнение второй степени
. (1)
Характеристическое уравнение линейного дифференциального уравнения второго порядка есть квадратное уравнение, для составления которого достаточно в дифференциальном уравнении заменить на , – на , а заменить на 1.
Как известно, при решении квадратного уравнения возможны три случая:
· корни этого уравнения действительные и различные: ;
· корни действительные и равные: ;
· корни есть комплексно-сопряженные числа: , .
Структура фундаментальной системы решений { , }, а вместе с ней и общего решения дифференциального уравнения (1), зависит от вида корней характеристического уравнения. Эта зависимость отражена ниже в таблице 1.
Таблица 1
Корни характеристического уравнения | Фундаментальная система решений | Вид общего решения |
I. Действительные различные | ||
II. Действительные равные | ||
III. Комплексно- сопряженные |
Предлагаем следующий порядок решения линейного однородного дифференциального уравнения:
1) Составить характеристическое уравнение для заданного дифференциального уравнения и найти его корни.
2) Записать функции , , составляющие фундаментальную систему решений.
3) Записать общее решение .
Для записи функций ФСР и общего решения используйте таблицу 3.
Пример 1.Решить дифференциальное уравнение .
Решение
Будем придерживаться сформулированного алгоритма.
1) Составим характеристическое уравнение для данного линейного дифференциального уравнения. Для этого в уравнении заменим и соответственно на и 1, получим
.
Найдем корни этого уравнения*):
,
.
2) Полученные корни , действительные и различные, следовательно, имеем случай I таблицы 1, поэтому фундаментальную систему решений образуют функции
, .
3) Тогда общим решением заданного дифференциального уравнения является функция
.
Ответ:
Пример 2Найти решение уравнения , удовлетворяющее условиям , .
Решение
Согласно правилу решения задачи Коши вначале найдем общее решение данного уравнения.
1) Составим и решим характеристическое уравнение:
, .
2) Корни характеристического уравнения действительные и равные (случай IIтаблицы 1), следовательно, фундаментальную систему решений образуют функции
, .
3) Тогда общее решение заданного дифференциального уравнения имеет вид
.
Теперь найдем искомое частное решение. Для этого нужно найти значения постоянных и Чтобы определить эти значения, найдем производную функции :
,
и подставим заданные начальные условия , в равенства
Получим систему уравнений относительно неизвестных и :
Þ
Решив эту систему, найдем значения и :
Þ Þ
Подставим найденные значения в общее решение , получим искомое частное решение:
.
Ответ:
Пример 3 Решить дифференциальное уравнение .
Решение
Характеристическое уравнение для данного дифференциального уравнения имеет вид
.
Решим это уравнение:
.
Получили комплексно-сопряженные корни (случай III таблицы 1), где . Значит, фундаментальная система решений состоит из функций
, .
Тогда общее решение данного дифференциального уравнения имеет вид
.
Ответ: .
Замечание. Для линейных однородных дифференциальных уравнений
порядка выше двух ( ) общее решение, аналогично уравнению второго порядка, представляет собой линейную комбинацию фундаментальной системы решений этого уравнения:
.
Функции *) фундаментальной системы решений также можно найти с помощью корней характеристического уравнения, которое для уравнения п-го порядка имеет вид
.
Пример 4 Решить дифференциальное уравнение
.
Решение
Запишем характеристическое уравнение:
.
Чтобы найти корни этого уравнения, разложим на множители его левую часть, используя способ группировки и вынесения общего множителя:
, ,
.
Приравнивая к нулю каждый из множителей, получаем:
1) Þ ;
2) – это уравнение действительных корней не имеет, поскольку .
Но так как всякое алгебраическое уравнение имеет столько корней, какова его степень (в общем случае комплексных), то уравнение имеет два комплексных корня. Найдем их
Þ Þ .
Итак, характеристическое уравнение имеет три корня:
.
Запишем фундаментальную систему решений заданного дифференциального уравнения. Действительному корню в фундаментальной системе соответствует функция–решение . Паре комплексно-сопряженных корней соответствуют два действительных решения
, .
Следовательно, общее решение заданного дифференциального уравнения имеет вид
.
Ответ: .
Пример 5 Решить дифференциальное уравнение .
Решение
Характеристическое уравнение , или имеет корни . Тогда фундаментальную систему решений образуют функции-решения
.
Значит, общее решение данного дифференциального уравнения имеет вид
.
Ответ:
Интегрирование линейных неоднородных дифференциальных уравнений
Рассмотрим линейное неоднородное дифференциальное уравнение второго порядка
(3.6),
где – действительные числа, непрерывная на некотором интервале функция.
Согласно теореме 3.3 о структуре общего решения линейного неоднородного дифференциального уравнения, общее решение уравнения (3.6) можно найти в виде , где –общее решение соответствующего однородного уравнения, а – какое-либо частное решение уравнения (3.6).
Отыскание общего решения линейного однородного дифференциального уравнения рассмотрено в предыдущем пункте. Следовательно, остается решить вопрос нахождения какого-либо частного решения линейного неоднородного дифференциального уравнения.
Для линейных неоднородных уравнений с постоянными коэффициентами в случае, когда правая часть – функция – имеет так называемый «специальный вид» (таблица 4), можно применить метод подбора частного решения. Суть метода заключается в следующем: по виду функции и корням характеристического уравнения подбирается вид функции с неопределенными коэффициентами, которые затем определяются в результате подстановки в заданное уравнение исходя из условия, что удовлетворяет уравнению (3.6) .
На практике для подбора функции можно использовать таблицу 2.
Рассмотрим примеры решения линейных неоднородных уравнений, придерживаясь алгоритма, сформулированного на странице 51.
Пример 6 Найти общее решение дифференциального уравнения
.
Решение. Данное уравнение есть линейное неоднородное дифференциальное уравнение второго порядка. Согласно теореме 3.3, общее решение этого уравнения будем искать в виде
,
где – общее решение соответствующего однородного уравнения, а – какое-либо частное решение заданного уравнения.
1) Найдём решение . Для этого составим и решим линейное однородное дифференциальное уравнение, соответствующее данному:
.
Характеристическое уравнение , или , имеет корни , . Поэтому (согласно правилу, сформулированному на странице 53, таблица 3) общее решение имеет вид
, или .
2) Найдем частное решение исходного дифференциального уравнения.
Функцию подберем по виду правой части данного дифференциального уравнения и корням соответствующего характеристического уравнения, ориентируясь на таблицу 4.
Таблица 4
Вид правой части | Корни характеристического уравнения | Вид частного решения |
I. , – многочлен степени т, а, b,…,c, d – известные числа | а) Число 0 неявляется корнем характеристического уравнения | . |
б) Число 0 – корень характеристического уравнения кратности r | ||
II. , – многочлен степени т, α, а, b,…,c, d – известные числа. | а) Число aне является корнем характеристического уравнения | . |
б) Число a – кореньхарактеристического уравнения кратности r | . | |
III. , а, b, β– известные числа. | а) Числа не являются корнями характеристического уравнения, | . |
б) Числа – корни характеристического уравнения кратности r | . | |
IV. Рт(х) и Qп(x) – многочлены степени т и п соответственно | а) Числа не являются корнями характеристического уравнения | , . |
б) Числа – корнихарактеристического уравнения кратности r | , . | |
Здесь А, В, С, D – неизвестные буквенные коэффициенты, , – многочлены степени s с буквенными коэффициентами. |
Правая часть уравнения – функция – есть функция вида , где – многочлен первой степени. Так как число является корнем характеристического уравнения кратности , то имеем случай I,б) таблицы 4. Значит, частное решение будем искать в виде
.
Неопределенные коэффициенты А и В найдем из условия, что функция является решением заданного уравнения, а значит, при подстановке этой функции в уравнение оно обращается в верное равенство.
Найдем , и подставим эти производные в уравнение . Имеем
, .
Получили равенство многочленов. Приравнивая коэффициенты при х, имеем ; приравнивая свободные члены, имеем . Таким образом, получили систему уравнений относительно А и B:
Решая эту систему, находим .
Значит, частное решение .
3) Запишем общее решение исходного дифференциального уравнения
.
Ответ: .
Пример 7 Решить дифференциальное уравнение .
Решение
Решение данного линейного неоднородного дифференциального уравнения также ищем в виде .
1) Найдём . Для этого составим и решим однородное уравнение, соответствующее данному:
.
Характеристическое уравнение имеет корни . Поэтому (согласно правилу на странице 53, таблица 3) общее решение однородного уравнения имеет вид
.
2) Найдем частное решение заданного уравнения. Функцию подберем по виду правой части и корням характеристического уравнения.
Правая часть дифференциального уравнения есть функция вида , где – многочлен второй степени, а , причем a не является корнем характеристического уравнения. Значит, эта функция относится к типу II,а) таблицы 4, поэтому частное решение уравнения будем искать в виде
,
где А, В, С – неопределенные коэффициенты.
Найдем эти коэффициенты из условия, что функция удовлетворяет заданному уравнению. Для этого найдем производные:
,
.
Подставим в исходное дифференциальное уравнение вместо у выражение , а вместо у¢¢ – выражение , получим
.
Разделим обе части этого равенства на , получим
.
Раскроем скобки и приведем подобные в левой части равенства
,
в результате имеем
.
Получили равенство двух многочленов. Приравнивая коэффициенты при одинаковых степенях х многочленов в левой и правой частях равенства, получим систему относительно А, В, С:
Решая эту систему, находим .
Значит, частное решение имеет вид .
3) Тогда общее решение заданного дифференциального уравнения
.
Ответ:
Пример 3.8 Решить дифференциальное уравнение
, .
Решение
Как известно, чтобы найти частное решение дифференциального уравнения, удовлетворяющее заданным начальным условиям, нужно, прежде всего, найти общее решение этого уравнения. Как и в предыдущих примерах, общее решение ищем в виде .
1) Составим и решим линейное однородное дифференциальное уравнение, соответствующее данному: .
Имеем: Þ .
Тогда .
2) Найдем частное решение . Правая часть дифференциального уравнения относится к виду III,a) таблицы 4:
,
где , , , и числа не являются корнями характеристического уравнения. Следовательно, решение нужно искать в виде
Определим коэффициенты А и В. Для этого находим
,
,
и подставив эти соотношения в исходное дифференциальное уравнение, получим
,
,
,
.
Приравнивая коэффициенты при в левой и правой частях этого равенства, имеем ; приравнивая коэффициенты при , имеем . В результате получим систему уравнений относительно А и В:
Решая эту систему, найдем , . Тогда
.
3) Следовательно, общее решение заданного дифференциального уравнения имеет вид
.
По условию, требуется найти частное решение заданного дифференциального уравнения, удовлетворяющее начальным условиям , а это значит: нужно найти такие значения постоянных , чтобы найденная функция
удовлетворяла этим начальным условиям.
Для этого найдем производную
.
Вычислим и :
,
.
Подставим эти значения в равенства , получим
или
Получили систему уравнений относительно . Решая эту систему, находим . Тогда искомое частное решение заданного дифференциального уравнения имеет вид
.
Ответ: .
В некоторых случаях функция в правой части линейного неоднородного дифференциального уравнения не является функцией «специального вида», но может быть представлена в виде суммы таких функций. Тогда для отыскания частного решения дифференциального уравнения можно использовать «принцип наложения», который заключается в следующем:
Если в уравнении правая часть представляет собой сумму двух функций , а и – частные решения уравнений
и
соответственно, то функция является частным решением исходного уравнения .
Рассмотрим пример.
Пример 9 Решить уравнение .
Решение
1) Найдем общее решение соответствующего однородного дифференциального уравнения:
Þ Þ Þ .
2) Найдем частное решение . Правая часть данного линейного неоднородного дифференциального уравнения не является функцией специального вида (смотри таблицу 4). Однако если преобразовать эту функцию:
,
то ее можно рассматривать как сумму функций и специального вида. Тогда частное решение исходного дифференциального решение исходного дифференциального уравнения также можно найти методом подбора частного решения, используя принцип наложения. Для этого рассмотрим два дифференциальных уравнения:
и
и найдем частное решение каждого из этих уравнений.
а) Для дифференциального уравнения частное решение будем искать в виде
,
так как есть многочлен нулевой степени (число), а число не является корнем характеристического уравнения (случай I,а таблицы 4). Найдем значение параметра М.
Имеем:
, .
Подставим , , в дифференциальное уравнение :
Þ .
Тогда .
б) Частное решение уравнения будем искать в виде
,
так как есть функция вида , где , а характеристическое уравнение не имеет комплексных корней (случай III,а таблицы 4).
Для определения коэффициентов А и В находим
,
.
Подставляя эти производные и функцию в дифференциальное уравнение , получим
,
,
.
Приравнивая коэффициенты при одноименных функциях, получим систему уравнений относительно А и В:
откуда находим . Тогда .
Следовательно, частное решение исходного дифференциального уравнения имеет вид
,
а искомое общее решение –
.
Ответ: .
*) Напомним, что корни квадратного уравнения находят по формуле , где .
*) Количество линейно независимых функций ФСР равно порядку дифференциального уравнения
<== предыдущая лекция | | | следующая лекция ==> |
Аналитическая геометрия. Прямая и плоскость | | | Определение линейного пространства |
Дата добавления: 2017-11-21; просмотров: 1333;