Усадка бетона и начальные напряжения. Прочность бетона

Бетон обладает свойством уменьшаться в объёме при твердении в обычной воздушной среде (усадка бетона) и увеличиваться в объёме при твердении в воде или сильно влажной среде (набухание бетона).

Усадка бетона происходит в результате кристаллизации цементного кам­ня и интенсивного испарения воды с поверхностных слоев бетона. Она особенно интенсивно протекает в первые две недели тверде­ния бетона. Через год её можно считать практически закончившей­ся.

Как показывают опыты, величина усадки бетона зависит от це­лого ряда причин:

- количества и вида цемента (его минералогического состава) – чем больше расход цемента на единицу объёма бетона, тем (при прочих равных условиях) больше усадка; при этом бетоны, при­готовленные на высокоактивных и глинозёмистых цементах, да­ют большую усадку. Наименьшей усадкой обладают бетоны, при­готовленные на портландцементе;

- количества воды – чем больше W/C, тем больше усадка;

- крупности заполнителей и их вида – при мелкозернистых песках и пористом щебне усадка больше. Чем выше способность запол­нителей сопротивляться деформированию, т.е. чем выше их мо­дуль упругости, тем усадка меньше. При разной крупности зёрен заполнителей и меньшем объёме пустот меньше и усадка;

- от влажности окружающей среды – чем ниже влажность, тем больше усадка;

- от наличия и состава различных гидравлических добавок и ускорителей твердения – они (на­пример, хлористый кальций), как правило, увеличивают усадку;

- влияние пропаривания бетона на процесс усадки изучено пока недостаточно; однако имеются данные о том, что после пропари­вания усадка уменьшается примерно в 1,5 раза;

- наличия заполнителей с глинистыми и пылевидными за­грязнениями – при их использовании усадочные деформации бетона могут увеличиться в несколько раз.

Средняя величина годичной усадки тяжёлого бетона средней прочности, приготовленного на портландцементе, при естественном твердении составляет esl = 3·10-4 относительных единиц. Абсолют­ная величина деформации набухания примерно в 2...5 раз меньше усадки.

Деформацию усадки бетона можно представить как сумму де­формаций двух видов – собственно усадки и влажностной усадки.

Собственно усадка происходит в результате уменьшения истин­ного объёма системы «цемент – вода» при гидратации. Она может развиваться при полной изоляции бетона от внешней среды и все­гда ведёт к необратимому уменьшению первоначального объёма.

Влажностная усадка связана с уменьшением влагосодержания бетона, т.е. с испарением свободной воды в цементном камне и обу­словлена капиллярными явлениями (натяжением менисков в порах цементного камня); она частично обратима: при твердении на возду­хе происходит уменьшение объёма (усадка), а при достаточно боль­шом притоке влаги – увеличение объёма (набухание).

Деформации, происходящие вследствие влажностной усадки бе­тона, по величине в 10...20 раз превышают деформации собствен­но усадки. Поэтому изменение влагосодержания бетона – основная причина усадочных деформаций.

Усадка повышает сцепление арматуры с бетоном, вызывая её об­жатие, что является положительным фактором.

В реальных условиях усадка бетона происходит неравномерно: развитие усадки начинается с поверхности бетона и постепенно, по мере его высыхания, распространяется вглубь. Уменьшение объёма цементного камня встречает сопротивление со стороны инертных со­ставляющих бетона, которые стремятся сохранить свой объём посто­янным. Возникающие при этом внутренние усилия могут служить причиной микроразрушений на границе цементно-песчаного камня и крупного заполнителя и даже в самом цементно-песчаном камне. Образующиеся при этом микро- и макротрещины отрицательно вли­яют на физико-механические свойства бетона. Особенно существен­но сказывается влияние усадки на напряженно-деформированное состояние в массивных конструкциях (плотины и т.п. конструкции).

Уменьшения начальных усадочных напряжений в бетоне и тем самым предотвращения образования усадочных трещин можно до­биться технологическими мерами – правильным подбором состава бетона (за счёт уменьшения объёма пор), увлажнением среды при тепловой обработке твердеющего бетона, увлажнением, особенно в первые дни, поверхности бетона при естественном твердении и др., а также конструктивными мерами – например, устройством уса­дочных швов в конструкциях большой протяженности, установкой противоусадочных сеток.

Бетоны, приготовленные на специальных цементах (расширяю­щемся или безусадочном) усадки не дают. Особо прочные бетоны – класса В100 и выше также практически не дают усадки.

Прочность бетона. Прочность бетона определяется его сопротивлением различным си­ловым воздействиям – сжатию, растяжению, изгибу, срезу. Один и тот же бетон имеет разное временное сопротивление при различных силовых воздействиях. Исследования показали, что теории прочно­сти, предложенные для других материалов, к бетону не применимы. Поэтому количественная оценка прочности бетона в настоящее вре­мя основывается на осреднённых опытных данных, которые прини­маются в качестве исходных при проектировании любых бетонных и железобетонных конструкций.

Отсутствие закономерности в расположении отдельных частиц, составляющих бетон, приводит к тому, что при испытании образ­цов, изготовленных из одной и той же бетонной смеси, получают различные показатели временного сопротивления – разброс проч­ности. Кроме того, необходимо помнить, что механические свойства цементного камня и заполнителей существенно отличаются друг от друга; к тому же структура бетона изобилует дефектами, которыми, помимо пор, являются пустоты около зёрен заполнителя, возника­ющие при твердении бетона.

Прочность бетона на осевое сжатие считается основной его характеристикой, так как наиболее ценным качеством бетона явля­ется его высокая прочность на сжатие. В лабораторных усло­виях она может определяться на образцах в форме кубов, призм или цилиндров. У нас в стране для оценки прочности бетона при сжа­тии используют преимущественно кубы.

Так как бетон представляет собой неоднородный искусственный каменный материал, то для получения достоверных сведений о его прочности в соответствии с действующими стандартами испытыва­ют партию образцов и определяют (средний предел прочности на осевое сжатие бетонных кубов с ребром 150 мм) и (средний предел прочности на осевое сжатие эталонных бетонных образцов призм).

Кубиковая прочность. При осевом сжатии кубы (как и другие сжатые образцы) разрушаются вследствие разрыва бетона в попе­речном направлении. Наклон трещин обусловлен влиянием сил тре­ния, которые развиваются на контактных поверхностях между по­душками пресса и опорными гранями куба (рис. 7, а). Силы трения, направленные внутрь, препятствуют свободным поперечным дефор­мациям бетона вблизи опорных поверхностей и тем самым повыша­ют его прочность на сжатие (создаётся эффект обоймы). Удержи­вающее влияние сил трения по мере удаления от торцевых граней куба уменьшается, поэтому после разрушения куб приобретает фор­му четырех усеченных пирамид, сомкнутых малыми основаниями. Если при осевом сжатии куба удаётся устранить или значитель­но уменьшить (с помощью смазки контактных поверхностей, на­пример, парафином или картонных прокладок) влияние сил опор­ного трения, то характер его разрушения и прочность изменяют­ся (рис. 7, б).

 

Рис. 7. Характер разрушения бетонных кубов: а – при наличии трения по опорным плоскостям; б – при отсутствии трения; 1 – силы трения; 2 – трещины; 3 – смазка

В этом случае поперечные деформации проявляют­ся свободно и трещины разрыва становятся вертикальными, параллельными действию сжимающей силы, а временное сопротивление бетона сжатию существенно уменьшается. Согласно стандарту кубы испытывают без смазки контактных поверхностей и при отсутствии прокладок.

Опытами установлено, что прочность бетона одного и того же состава зависит от размеров куба. За стандартные (эталонные) ла­бораторные образцы принимают кубы с ребром 150 мм. При использовании кубов иных размеров результаты их испытаний с помощью поправочных коэффициентов приводят к результатам испытаний эта­лонных кубов.

Призменная прочность. Реальные железобетонные конструкции по своей форме и размерам существенно отличаются от лаборатор­ных кубов. В них чаще всего один размер превышает два других (например, пролёт – ширину и высоту изгибаемого элемента; высо­та сжатого элемента – размеры его поперечного сечения).

В связи с тем, что при испытаниях бетона при переходе от об­разца в форме куба к образцу в форме призмы (при одинаковой площади их сечения) временное сопротивление сжатию при увели­чении h уменьшается (рис. 8), кубиковая прочность не может быть непосредственно использована в расчётах прочности элементов кон­струкций, а служит только для контроля качества бетона в производственных условиях.

Уменьшение временного сопротивления бетона сжатию при пе­реходе от образцов в форме куба к образцам в форме призмы объясняется тем, что при увеличении отношения h/a постепенно ослабевает влияние сил трения, возникающих между торцами образца и плитами пресса, на напряжённое состояние образца в его средней по высоте части, а для призм с h/a ≥ 4 это влияние практически полностью исключено.

Принято определять призменную прочность бетона –основную и наиболее стабильную характеристику прочности бетона на сжа­тие, используемую в расчётах на прочность сжатых и изгибаемых элементов – на эталонных призмах с размерами 150 ´ 150 ´ 600 мм (h/ a = 4).

Опытами установлено, что при 4 ≤ h/a < 8 ≈ 0,75 . Вли­яние гибкости призм при этом ощутимо не сказывается. Влияние гибкости в значительной мере начинает ощущаться при h/a≥8.

Прочность бетона на осевое растяжение ktзависит от сопро­тивления цементного камня растяжению и прочности его сцепления с зёрнами заполнителя. Согласно опытным данным:

, (1.1)

где средний предел бетона на осевое растяжение.

Причём относительная прочность бетона при осевом растяжении kt уменьшается с повышением прочности бетона на сжатие. Причинами низкой прочности бетона на растяжение являются неоднородность его структуры, наличие начальных напряжений, слабое сцепление цементного камня с крупным заполнителем. Некоторое повышение (примерно на 15...20%) может быть достигнуто увеличением расхода цемента на единицу объёма бетона, уменьшением W/C, применением вместо гравия щебня с шероховатой поверхно­стью, промывкой заполнителя.

Имеется несколько лабораторных методик определения .Од­нако при испытаниях по этим методикам наблюдается ещё больший разброс по­казателей прочности по сравнению с испытаниями бетона на осевое сжатие, так как образцы трудно центрировать. Поэтому, если из­вестна прочность бетона при сжатии, иногда определяют теоре­тически, например, по формуле:

. (1.2)

Прочность бетона при длительном действии нагрузки. При ис­пытаниях бетонных образцов в лабораторных условиях нагружение осуществляется достаточно быстро, со скоростью 20...30 Н/(см2с). Реальные же конструкции находятся под действием нагрузки де­сятки лет. Согласно опытным данным при длительном действии на­грузки и высоких напряжениях под влиянием развивающихся зна­чительных неупругих деформаций и структурных изменений бетон разрушается при напряжениях, меньших, чем временное сопротив­ление осевому сжатию при однократном кратковременном загружении .

Разница между кратковременным сопротивлением бетона и дли­тельным может достигать 25%, если за время выдержки под нагруз­кой прочность бетона не нарастает или нарастает незначительно, т. е. предел длительного сопротивления бетона сжатию находится в интервале:

. (1.3)

Если конструкция эксплуатируется в благоприятных для нарастания прочности бетона условиях и уровень напряжений по­степенно снижается, отрицательное влияние фактора длительности загружения может и не проявиться.

Динамическая прочность бетона. Нагружение считают динами­ческим в тех случаях, когда скорость нагружения от нуля до макси­мальных напряжений составляет 0,001...1с. К конструкциям, рабо­тающим на динамические нагрузки, относятся мосты, шпалы, под­крановые балки, покрытия дорог и аэродромов и др.

При динамической нагрузке особо малой продолжительности, имеющей место при ударных, взрывных и других воздействиях, на­блюдается повышение временного сопротивления бетона – динами­ческая прочность ( ).Чем меньше время нагружения бетонного образца динамической нагрузкой (τ)(или, что то же самое, чем боль­ше скорость роста напряжений, МПа/с), тем больше коэффициент динамической прочности бетона:

. (1.4)

Это явление объясняется энергопоглощающей способностью бетона, работающего в течение короткого времени нагружения дина­мической нагрузкой только упруго вследствие запаздывания разви­тия неупругих деформаций.

Кроме ударных и взрывных воздействий к нагрузкам особо ма­лой продолжительности можно отнести порывы ветра, сейсмические нагрузки, нагрузку, действующую на конструкцию в момент пере­дачи предварительного напряжения с арматуры на бетон.

Зависимость предела прочности бетона от времени действия на­грузки представлена на рис. 9, в.

 

Рис. 9. Зависимость предела прочности бетона: а – от числа цик­лов загружений; б – от характеристиики цикла на базе N = 2 • 106; в – от времени действия нагрузки; 1 – бетон класса В40; 2 бетон класса В25

Прочность бетона при многократно повторяющихся нагрузках. Многократно повторяющиеся нагрузки в зависимости от скорости нагружения могут иметь статический и динамический характер.

По количеству циклов «нагрузка – разгрузка» различают два вида повторного нагружения бетона: малоцикловое нагружение бетона (до 100...200 циклов) случайной по величине и периоду повторения нагрузкой с последующей разгрузкой (например, при забивке свай или шпунта) и многократно повторяющееся нагружение цикловой нагрузкой при коэффициенте ассиметрии (характеристике) цикла:

, (1.5)

где и – соответственно наименьшее и наибольшее нормальные напряжения материала в пределах изменения цикла нагрузки.

При малоцикловой загрузке и разгрузке бетона сжимающими на­пряжениями небольшой величины происходит уплотнение и упроч­нение бетона как при длительном сжатии. Когда сжимающие на­пряжения при этом колеблются в пределах между верхней и ниж­ней границами микроразрушения бетона ( ), то малоцикловое нагружение практически не влияет на его прочность, т.е. не снижает её по сравнению с однократным нагружением. Здесь – то наименьшее сжимающее напряжение в бетоне, при кото­ром по границе цементно-песчаного камня и крупного заполнителя образуются микротрещины; сжимающее напряжение в бе­тоне, соответствующее верхней границе образования микротрещин и цементно-песчаном камне.

Прочность бетона на сжатие при действии на него многократ­но повторяющихся нагрузок, с повторяемостью несколько миллио­нов циклов, под влиянием развития структурных микротрещин и в результате постепенного накопления пластических деформаций снижается по сравнению с однократным кратковременным загружением. Степень её понижения зависит от характеристики цикла , количества циклов нагрузки и разгрузки N и от­носительного уровня напряжений . Это следует учитывать при проектировании мостов, шпал, подкрановых балок, перекрытий некоторых промышленных зданий, транспортных эстакад, станин мощных прессов и других конструкций, испытывающих подобные нагрузки.

Предел прочности бетона при многократно повторяющейся нагрузке называют пределом выносливости.

Различают абсолютный предел выносливости , т.е.наиболь­шее напряжение, которое бетон способен выдерживать, не разру­шаясь, при неограниченном увеличении числа циклов, и практиче­ский предел выносливости , полученный на ограниченной базе N = 2•106. Последний зависит от характеристики цикла почти линейно. Его наименьшее значение для наиболее тяжелого цикла при бетоне класса В25 составляет = 0,5 (рис. 9, б). С уве­личением N происходит постепенное снижение , однако после N = (1,5...2) • 106 циклов это снижение незначительно (рис. 9, а).

Наименьшее значение абсолютного предела выносливости, как показали исследования, связано с нижней границей образования структурных микротрещин так, что . Такая связь между и позволяет находить предел выносливости по первич­ному загружению, определяя ультразвуковой аппаратурой.

 






Дата добавления: 2021-09-07; просмотров: 353; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2021 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.024 сек.