Деформативность бетона. Виды деформаций


 Виды деформаций. Под деформативностью бетона понимается изме­нение его формы и размеров под влиянием различных воздействий (в том числе в результате взаимодействия бетона с внешней средой).

Бетон является упруго-пластическим материалом, в котором, на­чиная с малых напряжений, помимо упругих деформаций (ee), появля­ются и неупругие остаточные или пластические (epl), т.е. полная дефор­мация (eb) без учёта усадки равна:

(1.12)

В бетоне различают деформации двух основных видов: объём­ные, развивающиеся во всех направлениях под влиянием усадки или изменения температуры, и силовые, развивающиеся главным образом в направлении действия сил. Силовым продольным деформациям также соответствуют некоторые поперечные деформации бетона; начальный коэффициент поперечной деформации бетона v равен 0,2 (коэффициент Пуассона). Причём v остаётся практически по­стоянным вплоть до напряжений . При этом относительная продольная деформация будет , апоперечная деформация .

Силовые деформации в зависимости от характера приложения нагрузки и длительности её действия подразделяются на следующие три вида:

- при однократном первичном загружении кратковременной на­грузкой;

- при длительном действии нагрузки;

- при многократном повторяющемся действии нагрузки.

Наибольший практический интерес представляют продольные деформации бетона при осевом сжатии. Для изучения деформативности бетона при сжатии используют бетонные призмы с h/a = 4, чтобы исключить влияние на получаемые результаты сил трения, возникающих между опорными гранями образца и плитами пресса. На боковые грани призм в средней их части по высоте устанавли­вают приборы для замера деформаций (рис. 12, а) или наклеивают электротензодатчики.

Нагрузка к призме прикладывается постепенно по этапам или ступеням (ступень обычно составляет 1/10...1/20 от ожидаемой раз­рушающей нагрузки). Если деформации на каждой ступени прило­жения нагрузки замерять дважды: первый раз сразу после приложе­ния нагрузки и второй раз через некоторое время после выдержки под нагрузкой (обычно около 5 минут), то на диаграмме полу­чим ступенчатую линию, изображенную на рис. 12, б. Деформации, измеренные сразу после приложения нагрузки, упругие и связаны с напряжениями линейным законом, а деформации, развивающие­ся за время выдержки под нагрузкой, неупругие и на диаграмме имеют вид горизонтальных площадок. При достаточно боль­шом числе ступеней загружения зависимость между напряжениями и деформациями может изображаться плавной кривой (рис. 12, б).

Деформации бетона при однократном первичном загружении кратковременной нагрузкой. Длительность загружения обычно не превышает 60 минут. Диаграмма для этого случая показана на рис. 13.

Степень её криволинейности зависит от продолжительности действия нагрузки, уровня напряжений и класса бетона, т. е. .

В связи с этим целесообразно выделить исходные (эталонные) диаграммы, полученные на стандартных призмах, испытываемых скоростью роста деформаций 2%, а затем уже переходить к кор­ректировке (трансформированию) диаграмм. Такая скорость изме­нения деформаций позволяет достигать вершины диаграммы при­мерно за 1 час.

Если по мере падения сопротивления бетона удаётся в той же мере снижать нагрузку, то может быть получен нисходящий участок диаграммы. Знать как работает бетон на этом участке важно для ряда конструкций и видов нагружения.

Полная относительная деформация при однократном загружении бетонной призмы кратковременно приложенной нагрузкой без учёта усадки бетона равна , т.е. она состоит из упругой части, равной и неупру­гой , которая после снятия нагрузки практически не исчезает. Точнее небольшая доля неупругих деформаций (около 10%) в течение некоторого времени после разгрузки исчезает. Эта часть пластической деформации называется деформацией упруго­го последействия εер. Кроме того, исчезает упругая составляющая пластической деформации εе1,характеризующая обратимое сплю­щивание пустот цементного камня. Таким образом, после разгрузки бетона окончательно остается остаточная деформация, возникаю­щая из-за необратимого сплющивания пустот цементного камня и излома их стенок εрl1 (рис. 13). R2напряжение в момент, пред­шествующий началу интенсивного разрушения бетона (условная ве­личина).

Рис. 12. К определению продольных деформаций бетона при сжа­тии: а – опытный образец (призма) с наклеенными на боковых по­верхностях электротензодатчиками; б – диаграмма при при­ложении нагрузки ступенями; 1 – прямая упругих деформаций, 2 – кривая полных деформаций

 

При невысоких напряжениях ( ) превалируют упругие деформации ( ), а при бетон можно рассмат­ривать как упругий материал. При осевом растяжении диаграмма имеет тот же характер что и при сжатии.

Необходимо обратить внимание на предельные деформации, при которых бетон разрушается (точнее начинает разрушаться). Неза­висимо от режима нагружения за предельное значение деформации бетона принимают величину, соответствующую максимальному на­пряжению. Считают приближенно, что средние значения предель­ных деформаций тяжёлого бетона любого класса составляют при кратковременном действии нагрузки:

- при сжатии еиЬ = 0, 002 (2 мм на 1 м);

- при растяжении еиbt = 0,00015 (0,15 мм на 1 м).

Знание предельных деформаций бетона необходимо, так как от их величин зависит диапазон совместной работы арматуры с бето­ном и эффективность её использования.

Деформации бетона при длительном действии нагрузки. При длительном действии нагрузки (t > 60 минут), даже постоянной, неупругие деформации с течением времени значительно увеличива­ются. В реальных же условиях в процессе строительства зданий и сооружений идёт постепенное ступенчатое нагружение железобетонных элементов.

Нарастание неупругих деформаций при длительном действии на­грузки называется ползучестью бетона. Впервые ползучесть бетона была обнаружена И. Самовичем в 1885 г. Деформации ползуче­сти состоят из двух частей: пластической, протекающей почти од­новременно с упругой, и вязкой, для развития которой требуется определённое время. При длительном загружении бетона постоян­ной нагрузкой, которая меньше разрушающей, диаграмма сжатия выглядит так, как показано на рис. 14, а. Участок 0 - 1 этой диа­граммы соответствует деформации, возникающей при загружении; кривизна этого участка зависит, главным образом, от скорости загружения. Участок 1 - 2 характеризует нарастание неупругих де­формаций при постоянном значении напряжений. Наибольшая ин­тенсивность нарастания деформаций ползучести наблюдается в пер­вые 3...4 месяца после загружения бетона (рис. 14, б). Они достига­ют к концу этого периода 40...45% от eupl,через год они составляют приблизительно 65...75% от eupl,и через два года 80...90%. Затем на­растание этих деформаций по мере приближения к предельной для данных условий величине eupl постепенно затухает. Замечено, что нарастание деформаций ползучести прекращается одновременно с окончанием нарастания прочности бетона. Опыты показывают, что независимо от того, с какой скоростью достигнуто напряжение σь, конечные неупругие деформации, соответствующие этому напряже­нию, всегда будут одинаковы (рис. 14, в).

 

Рис. 14. Неупругие деформации бетона в зависимости: а, б – от длительности действия нагрузки; в – от скорости начального загружения

Деформации ползучести развиваются главным образом в на­правлении действия усилий и могут превышать упругие в 3...4 раза, т. е. εирlе - 3...4. Это обстоятельство заставляет с ними считаться при проектировании железобетонных конструкций.

Одновременно с ползучестью развиваются и деформации усадки, т. е.:

(1.13)

Природа ползучести бетона объясняется его структурой, дли­тельным процессом кристаллизации и постепенным уменьшением количества геля при твердении цементного камня. Под нагрузкой происходит постепенное перераспределение напряжений с испыты­вающей вязкое течение гелевой структурной составляющей на кри­сталлический сросток и зёрна заполнителей. Развитию деформаций ползучести способствуют также капиллярные явления, связанные с перемещением в микропорах и капиллярах избыточной воды под нагрузкой. С течением времени процесс перераспределения напря­жений затухает и деформирование прекращается.

Ползучесть бетона условно разделяют на линейную и нелиней­ную. Считают, что линейная ползучесть имеет место при ( напряжение, соответствующее нижней границе микрораз­рушений). В этом случае деформацию ползучести определяют по формуле:

(1.14)

где с – мера ползучести бетона при сжатии .

В практических расчётах используют обычно предельную меру ползучести бетона спр, отнесенную ко времени t → ∞ (практически t = 3...4 годам). Её значения при для различных сроков загружения бетона приведены в СНиП 2.05.03-84 «Мосты и трубы» в табл. 3.

Обозначим через v= εе/εь коэффициент упругопластичности бетона, а через λ = εpl /εь – коэффициент пластичности бетона, тогда отношение

(1.15)

будет называться характеристикой ползучести бетона φ, которая из­меняется от 0 до 4.

Зависимость между с и φ можно получить из (1.14) и (1.15), учитывая, что , тогда φ = сЕb; φ и с вводятся в расчёт для количественной оценки деформаций линейной ползучести при сжатии.

Величина деформации ползучести зависит от многих факторов.

Загруженный в раннем возрасте бетон (при прочих равных усло­виях) обладает большей ползучестью, чем старый бетон. Ползучесть бетона в сухой среде значительно больше, чем во влажной. Техно­логические факторы также влияют на ползучесть бетона: с увели­чением W/C и расхода цемента на единицу объёма бетонной смеси ползучесть возрастает; с повышением прочности зёрен заполнителя ползучесть уменьшается; с повышением класса бетона ползучесть уменьшается. Бетоны на пористых заполнителях обладают несколь­ко большей ползучестью, чем тяжёлые бетоны. Ползучесть зависит от вида цемента: наибольшей ползучестью обладают бетоны, при­готовленные на шлакопортландцементе или портландцементе. Пол­зучесть тем меньше (при прочих равных условиях), чем больше размеры поперечного сечения бетонного элемента. Максимальные деформации ползу­чести (при прочих равных условиях) достигаются при водонасыщении бетона в пределах 20...35%. Пропаривание бетона снижает его ползучесть на 10...20%, а автоклавная обработка – на 50...80%. Ползучесть бетона оказывает существенное влияние на ра­боту железобетонных конструкций под нагрузкой, что учитывают, например, при расчете внецентренно сжатых элементов, при оценке деформативности конструкций и при определении внутренних уси­лий в статически неопределимых конструкциях.

Деформации бетона при многократно повторяющемся действии нагрузки. Многократное повторение циклов нагрузки и разгрузки бетонного образца приводит к постепенному накоплению неупругих деформаций. Линии нагрузки и разгрузки образуют петлю гистере­зиса, площадь которой характеризует энергию, затраченную за один цикл на преодоление внутреннего трения.

При напряжениях, не превышающих предел выносливости , после достаточно большого числа циклов неупругие дефор­мации бетона, соответствующие данному уровню напряжений, по­степенно выбираются и бетон начинает работать упруго (рис. 15).

При высоких напряжениях после некоторого числа циклов кривая достигает прямолинейного вида, а затем на­чинает искривляться снова, но уже в обратном направлении, т.е. вогнутостью в сторону оси напряжений. Искривление начинается с верхней части прямой (т.е. вблизи наивысшего напряжения) и появ­ляется точка перегиба. При продолжающемся повторении приложении нагрузки точка перегиба опускается всё ниже по кривой, пока не исчезнет. Тогда вся кривая оказывается вогнутой в сторону оси напряжений. При этом остаточные деформации после каждой разгрузки неогра­ниченно растут, а кривая всё больше наклоняется к оси абс­цисс. Петля гистерезиса всё больше увеличивается и, наконец, обра­зец хрупко разрушается.

Физические явления, происходящие в бетоне при повторных нагружениях, близки к явлениям, происходящим при действии очень длительных нагрузок, т.е. длительное нагружение можно рассмат­ривать как многократно повторное с .

При вибрационных нагрузках с большим числом повторений в минуту (200...600) наблюдается ускоренное развитие ползучести бе­тона, называемое виброползучестью или динамической ползучестью бетона.



Дата добавления: 2021-09-07; просмотров: 1173;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.012 сек.