ОСновы расчета процесса массообмена (абсорбции)


Рассмотрим процесс массообмена между газовой и жидкой фазами (рис. 5.1).

 

Рисунок 5.1 - Схема процесса массообмена между газом и жидкостью

Между газовой фазой Gи жидкой фазой Lимеется поверхность раздела. Пусть концентрация газового компонента в газовой среде будет больше, чем в жидкой. На некотором расстоянии от по­верхности раздела фаз в каждой из фаз проходит интен­сивная конвективная диффузия молекул, и можно счи­тать, что концентрация газового компонента у во всех точках газовой фазы и кон­центрация этого же компо­нента х во всех точках жид­кой фазы будут постоянны­ми. В пограничных слоях с разных сторон поверхности раздела фаз движение мо­лекул осуществляется как молекулярной, так и конвек­тивной диффузией. Скорость конвективной диффузии зна­чительно больше скорости молекулярной диффузии. Чем ближе к поверхности раздела фаз, тем меньше становится скорость конвек­тивной диффузии и возрас­тает скорость молекулярной диффузий. Таким об­разом, для того чтобы газовый компонент раство­рился в жидкости, он должен из общей массы газовой смеси в результате конвективной диффузии подойти к по­граничному слою, под влиянием молекулярной диффузии перейти поверхность раздела фаз и в результате конвек­тивной диффузии проникнуть в жидкость.

В процессе перехода из газовой в жидкую фазу кон­центрация газового компонента постепенно уменьшается в газовой фазе и возрастает в жидкой. Переход газового компонента из газовой фазы в жидкую будет проходить до тех пор, пока концентрация его в этих двух фазах не станет равновесной. Следовательно, движущая сила про­цесса массообмена может быть выражена разностью концентраций газообразного компонента ун—yр=Δ в га­зовой фазе и хр—хн=Δ в жидкой фазе. Равновесная кон­центрация поглощаемого компонента yр в газовой фазе, которая характеризует окончание процесса массообмена, может быть определена из закона Генри по формуле

где Мк, Мсм - молекулярные массы соответственно га­зового компонента и смеси газа, в кото­ром находится этот компонент, кг; и - парциальное давление газового компо­нента в смеси и общее давление газовой смеси, Н/м2.

Движущая сила массообмена неодинакова на входе газа в аппарат и на выходе его из аппарата. Поэтому при расчете аппаратов для химической очистки газа в формулу (5.7) следует подставлять ее среднее зна­чение. Если обозначить Δ1 движущую силу массообмена на входе газа в аппарат, а Δ2 - на выходе из аппарата, то в аппаратах, в которых между газом и жидкостью осуществлен принцип противотока, значение средней движущей силы массообмена будет при Δ12>2:

При условии 0,5<Δ12<2

В противоточных аппаратах газ перед выходом из ап­парата соприкасается со свежей жидкостью, которая спо­собна в большей мере поглощать определенный газооб­разный компонент, и в результате газ более полно очищается, чем в прямоточных аппаратах. Поэтому в противоточных аппаратах значение движущей силы мас­сообмена (абсорбции) больше, чем в прямоточных.

Коэффициент массопередачи, определяющий скорость абсорбции, может быть представлен из уравнения (5.7) следующей формулой:

Таким образом, коэффициент массопередачи опреде­ляет количество газового компонента, который переходит из газовой среды в жидкую через единицу поверхности раздела (F=l) при Δср=1. Для определения коэффи­циента массопередачи выразим уравнение конвентивного массообмена между газовой и жидкой фазами.

Количество газового компонента, которое перейдет из газовой фазы к поверхности раздела фаз, будет:

Количество газового компонента, которое перейдет от поверхности раздела фаз в жидкость:

где , - коэффициенты массоотдачи соответственно для газовой и жидкой фаз, м/с. Представим, что линия равновесия фаз будет прямой с тангенсом угла наклона m. Ее уравнение имеет вид

Из этого уравнения выразим концентрацию компонен­та в жидкой фазе через его концентрацию в газовой фазе:

где уг - концентрация компонента в газовой фазе, рав­новесная с его концентрацией в общей массе жидкой фазы.

Подставив эти значения в уравнение (5.13) и сде­лав преобразования в уравнениях (5.12) и (5.13), получим

Сложив эти уравнения, получим выражение движу­щей силы абсорбции:

Обозначив выражение в скобках через 1/К, найдем выражение коэффициента массопередачи (абсорбции):

Член 1/ выражает сопротивление переходу газооб­разного компонента в газовой фазе, а член / - в жид­кой фазе. Для хорошо растворимых газов процесс аб­сорбции определяется в основном сопротивлением в га­зовой фазе; в этом случае сопротивление жидкой фазы мало и им можно пренебречь. При плохо растворимых газах можно пренебречь сопротивлением газовой фазы и учитывать только сопротивление жидкой фазы. Раз­мерность коэффициента абсорбции К может быть полу­чена из формулы (5.11) в зависимости от размерности движущей силы процесса абсорбции:

Если Δ выражена в единицах объема (кг/м3), то Кс будет выражен в кг/(м2·с·кг/м3) или м/с.

При выражении Δ через единицы давления (Н/м2) Kр будет иметь размерность кг/(м2·с·Н/м2) или с/м.

Если Δ выражена в массовых единицах (кг/кг), то

Связь между Кр и Кс выражается зависимостью

Коэффициент массоотдачи определяют по эмпиричес­ким формулам, найденным опытным путем для различ­ных процессов. По формулам (5.9), (5.10), (5.15) получают точные результаты для расчетов процесса абсорбции газов в случае, если линия равновесия является прямой. В дру­гих случаях расчет аппаратов осуществляют графо- аналитическим методом (расчетом числа единиц переноса).

 

 

5.3 Адсорбционная очистка газов от сернистого ангидрида

Сухие методы очистки газов от S02 твердыми поглотителями при­влекают внимание исследователей и производственников своей прос­тотой, компактностью оборудования относительно небольшой вели­чиной капитальных затрат на их сооружение. Однако энергозатраты и эксплуатационные расходы при сухой очистке газов являются зна­чительными. При сухих методах очистки в дымовую трубу выбрасы­ваются нагретые газы (более чем до 100° С), в результате чего улучшается (по сравнению с мокрыми методами очистки) их рассеи­вание в атмосфере.

В настоящем разделе рассмотрены адсорбционные ме­тоды очистки газов от S02, применение которых в агломерационном производстве в ряде случаев может оказаться целесообразным. В качестве поглотителей S02 можно применять угольные сорбенты, силикагели и синтетические смолы. Угольные сорбенты имеют очень развитую поверхность (до 1500 м2/г). На этой поверхности из дымовых газов при 40 - 150 °С адсорбируются кислород и пары воды. В этих условиях на поверхности пор угля происходит окисле­ние S02 в S03, который взаимодействует с адсорбированной водой и образует серную кислоту. Она постепенно заполняет поры адсор­бента и процесс очистки газа прекращается. Лучшим угольным сор­бентом для очистки газов от S02 является каменноугольный адсорбционный кокс, полученный из предварительно окислен­ного воздухом каменного угля и сформированный прессованием. Для осущест­вления промышленного ме­тода очистки газов от S02 насыщенный сорбент нужно регенерировать. Существуют три вида регенерации насы­щенного сорбента: продувка сорбента инертным газом при 200 - 450 °С; промывка сорбента водой или водным раствором аммиака с полу­чением разбавленной серной кислоты или раствора суль­фата аммония; обработка сорбента восстановительным газом при 600 - 900 °С с об­разованием сероводорода, являющегося сырьем для получения чистой серы и серной кислоты.

Тот или иной способ ре­генерации связан с местны­ми условиями (наличием аммиачной воды, восстано­вительного газа, вторичных энергетических ресурсов).

Силикагели по сравне­нию с угольными сорбентами, имеют более низкую поглотительную способность, что связано, по-видимому, с меньшей поверхностью пор (600 м2/г). Ряд исследова­телей считают, что силикагели перспективны для промышленной очистки небольших количеств газа от S02. Синтетические смолы име­ют большую адсорбционную емкость, чем другие поглотители. Луч­шими поглотителями S02 являются анионит ЭДЭ-10П и цеолит 5А. Их емкость составляет 18-20%. Отработанные аниониты регенери­руют щелочными растворами.

Очистка газов от S02 угольными адсорбентами в кипящем слое не требует предварительной глубокой очистки от пыли, что являет­ся существенным преимуществом этого метода. Однако зерна сор­бента в кипящем слое изнашиваются, что приводит к дополнитель­ному расходу сорбента. Схема этого процесса представлена на рис. 5.2. [9]

1 - бункер с сорбентом; 2 - затвор; 3 - многополочный адсорбер; 4 - циклон; 5 - приемный бункер; 6 - десорбер; 7 - подогреватель; 8 - газодувка; 9 - сито.

Рисунок 5.2 - Схема очистки газов от S02 в кипящем слое сорбента

Газ, подлежащий очистке, поступает в многополочный ад­сорбер кипящего слоя, проходит через дырчатые полки снизу вверх и поддерживает сорбент на полках в псевдосжиженном состоянии.

1 - труба Вентури; 2 - се­паратор влаги и пыли; 3 - абсорберы; 4 - сборник кис­лоты; 5 - циркуляционный насос.

Рисунок 5.3 - Схема процесса «Лурги» очистки газов от S02.

Сорбент в виде гранул угля поступает в адсорбер из бункера через питатель. Далее газ поступает в циклон, где он очищается от золы, которая свободно проходит с газом через адсорбер. Очищенный газ выбрасывается через дымовую трубу в атмосферу. Из адсорбера сорбент через приемный бункер и питатель самотеком попадает в десорбер, представляющий собой стальной цилиндр, обогреваемый снаружи. Температура сорбента в нем доводится до 400 -450 °С. В десорбере происходит выделение S02. Для лучшей десорбции адсорбер продувается током рециркулирующего газа, к которому под­мешивается инертный газ или водяной пар. Для побуждения цирку­ляции установлена газодувка, а для нагрева инертного газа - подо­греватель. S02 в смеси с инертным газом отводится к потребителю. Сорбент из десорбера попадает на сито, где отсеивается мелочь, по­явившаяся в результате механического износа зерен угля. Просев удаляется из системы, а крупные зерна идут на повторное исполь­зование в адсорбере. Рекомендуемый размер гранул сорбента 1,5 - 3,0 мм, соответствующая скорость газового потока 1,3 -1,5 м/с; содержание S02 в десорбированной газовой смеси 40 - 50%. При при­менении в качестве сорбента специальных углей для поглощения 1 т S02 нужно пропустить через адсорбер 5 - 6 т угля.

Потери адсорбента зависят от скорости газа и прочности зе­рен. При очистке газа с содержанием 0,2% S02 и применением в ка­честве сорбента угля типа СКТД потери сорбента доходят до 40 кг на каждую тонну уловленного S02. Перспективы применения дан­ного способа значительно повысятся при создании более дешевого и прочного сорбента. Применение формированных гранулированных сорбентов на основе каменноугольного кокса и полукокса может существенно повысить конкурентоспособность данного метода очист­ки газов от S02.

Очистка газов в слое неподвижного сорбента разработана в не­скольких вариантах. Известны процессы, предложенные фирмами «Лурги» и «Хитачи», а также процесс Штратмана.

Принципиальная схема процесса «Лурги»[9] представлена на рис. 5.3. Загрязненный газ предварительно очищают от пыли в трубе Вентури и сепараторе. Затем его направляют на адсорбцию. Устанавливают два параллельно включенных адсорбера. Они работают
попеременно: в одном происходит поглощение S02 из газа, а во вто-
ром его десорбция. В поглотительном адсорбере газ, содержащий
S02, проходит через увлажненный слой сорбента (активированного
угля). Сернистый газ адсорбируется сорбентом, окисляется до S03
и превращается в серную кислоту. Затем адсорбер переводят на ре-
жим регенерации, для чего включают орошение сорбента водой. Отмытая разбавленная 10—15%-ная серная кислота поступает в сборник, а оттуда насосом подается в трубу Вентури, для очистки и охлаждения газов. В трубе Вентури за счет испарения воды концентрация серной кислоты повышается. При очистке хорошо обеспыленных газов концентрацию серной кислоты удается повысить до 65%, а при очистке запыленных газов - до 25%. Степень очистки газа на опытной установке достигала 98-99%. Поглотитель работал более трех лет без потери активности.

 

5.4 Каталитическая очистка газов

Главным источником загрязнения атмосферы СО и SO2в энергетике являются газы, полученные при сжигание различных газов.

Различными организациями проделана большая работа по разработке наиболее эффективных катализаторов и технологии процесса окисления СО. Однако задача каталитической очистки от СО осложняется наличием в газах S02 и пыли. При этом содержание пыли в очищенном газе до катализа с применением стационарного слоя не должно превышать 20 - 50 мг/м3.

Такая глубокая очистка может быть получена лишь в электрофильтрах, тканевых фильтрах или трубах Вен­тури.

В настоящее время имеется большое число катализаторов реакции окисления СО в СО2. Это оксиды металлов Fe2О3, CuO, Сr2О3, MnО2, V2О5 и другие, смеси этих оксидов, металлы платиновой группы, в частности палладий. Хорошие результаты дает промотированние окисных катализаторов металлами платиновой группы. Довольно подробно изучен марганцевокислый катализатор,
который оказался пригодным при больших объемных скоростях процесса.

Однако все окисные катализаторы насыщаются S02 со скоростью, зависящей от концентрации S02 в газах, температуры и вида катализатора. Самым устойчивым является катализатор из оксида хрома на γ-глиноземе; однако и его активность со временем падает в присут­ствии S02. Потеря катализаторами активности в присут­ствии в газах S02 объясняется образованием сульфатов. Катализаторы из оксидов металлов непригодны для окисления СО в СО2 в присутствии S02. Они являются, эффективными лишь для бессернистых газов или газов, предварительно очищенных от S02.

Наиболее надежными катализаторами, которые дли­тельное время могут работать в присутствии S02, являются катализаторы из металлов платиновой группы, в частности палладиевые.

Они надежно работают при температуре выше 300оС. При больших содержаниях серы в газах целесообразно производить комплексную их очистку от СО и S02 окислением на катализаторах с по­следующей переработкой S03 в серную кислоту.

Схема комплексной очистки газов от СО и S02 представлена на рис. 5.4. Запыленные газы очищаются от круп­ных фракций пыли в аппаратах циклонного типа и с со­держанием ее около 1 - 2 г/м3 поступают в аппараты тонкой очистки сухим способом. В качестве аппаратов тонкой очистки можно применить электрофильтры или тканевые фильтры, которые обеспечивают более глубо­кую очистку от пыли (до 10 - 20 мг/м3) и являются в ­данном случае предпочтительными, так как полностью исключают засорение слоя катализатора.

1 - рукавный фильтр; 2 - контактный аппарат; 3 - холодильник-конденсатор; 4 - сборник серной кислоты; 5 - эксгаустер; 6 - дымовая труба.

Рисунок 5.4 - Схема комплексной очистки газов от пыли, СО и S02

Очищенные от пыли газы поступают в контактный аппарат, где СО окисляется в СО2, aS02 в S03. Далее газы поступают в холодильник-конденсатор, охлаждае­мый водой (или воздухом), где температура газов сни­жается и происходит конденсация серной кислоты, ко­торая образуется из S03 и водяных паров. В установке такого типа можно получать H2S04 концентрацией до 80%. Серная кислота из конденсатора через гидрозатвор отводится в сборник, а очищенные от СО и S02 газы эксгаустером выбрасываются в дымовую трубу. Процесс очистки непрерывный, степень очистки от СО приближа­ется к 100%, а от S02 к 90%.

1 - кожух; 2 - крышка; 3, 4 - кассеты с катализатором для окисления соот­ветственно S02 в S03 и СО в СО2; 5 - трубчатый теплообменник; 6 - смеси­тельная решетка; 7 - горелочное устройство; 8 - трубопровод для пода­чи дополнительного топлива.

Рисунок 5.5 - Схема контактного аппарата для окисления СО и S02.

Схема контактного аппарата конструкции Гидрогазоочистки представлена на рис. 5.5. Контактный аппарат представляет собой трубчатый теплообменник, внутри которого в полом цилиндре размещены две кассеты с катализаторами. Нижняя кассета заполнена палладиевым катализатором для окисления СО в СО2, верхняя кассета - катализатором из пятиокиси ванадия для окисления S02 в S03.

Нагретые до 150° С агломерационные газы поступают в теплообменник контактного аппарата, где подогреваются теплом отходящих из аппарата газов. Если этого тепла окажется недостаточно, чтобы нагреть газы до температуры процесса окисления СО (300—350° С) и температуры окисления S02 (400—450°С), то нужно расходовать дополнительное тепло сжиганием топлива, например доменного газа. Дополнительное топливо подводится в нижнюю часть аппарата специальным горелочным устройством.

5.4.1 Очистка газов от сернистого ангидрида каталитическим окислением

Данный метод ос­нован на окислении S02 в S03 на катализаторе с после­дующей абсорбцией S03 и образованием серной кисло­ты. Окисление S02 в S03 протекает по реакции S02+ 1/2О2= S03+ +96 кДж/моль.

Константа равновесия этой реакции определяется уравнением

(5.16)

Вычисленные по этой формуле константы равновесия реакции и соответствующие величины степени превраще­ния S02 в S03 имеют следующие значения:

Температура, °С………390 425 475 525 600 650
Константа равновесия

КР, МПа……………….. 57,5 24,5 8,23 3,2 0,95 0,47
Степень превращения

S02 в S03, %.....................99,0 98,4 95,2 91,0 73,0 57,0

Таким образом, по условиям равновесия повышение температуры не благоприятствует окислению S02 в S03. Энергия активации этой реакции очень велика, поэтому без катализатора реакция гомогенного окисления S02 в S03 практически не проходит даже при высокой тем­пературе.

В качестве катализатора при производстве серной кислоты применяют в основном контактную массу БАВ, названную по начальным буквам элементов, входящих в ее состав (бария, алюминия, ванадия), и контактную массу СВД (сульфованадиеводиатомовую). Контактную массу формуют в виде гранул, таблеток или колец.

Зависимость константы скорости реакции окисления S02 в S03 на катализаторах БАВ и СВД приведена на рис. 5.6. Перелом кривой при 440 °С связан с изменением энергии активизации в этой точке. Таким образом, при увеличении температуры с 400 до 500 °С константа ско­рости реакции увеличивается более чем в 30 раз, а кон­станта равновесия уменьшается в 9 раз. Следовательно, процесс окисления S02 в S03 зависит от двух величин, одна из которых с повышением температуры увеличива­ется, а другая уменьшается. Анализ показывает, что кривая зависимости скорости образования S03 имеет максимум. Наиболее благоприятная температура процес­са равна 460 - 480° С. При объемной скорости газов 10000 ч-1 достигается степень окисления S02 не менее 90%.

Рисунок 5.6 - Зависимость константы скорости реакции окисления S02 в S03 от температуры на ванадиевых катализаторах БАВ и СВД.

Высокая температура протекания реакции окисле­ния S02 создает трудности при практическом осуществ­лении данного процесса в производственных условиях. Как было показано, основными загрязнителями атмосферы S02 являются аглофабрики и котельные, отходящие газы которых имеют тем­пературу около 150° С, при которой контактное окисле­ние газов является невозможным. Поэтому в схеме кон­тактного окисления нужно предусмотреть нагрев агло­мерационных газов до 450 °С. Источником тепла может явиться готовый агломерат, нагретый до высокой темпе­ратуры в зоне обжига. Этот агломерат нужно охладить, поэтому целесообразно совместить узел охлаждения аг­ломерата и нагрева газов перед контактным аппаратом.

Принципиальная схема контактного окисления S02, содержащегося в агломерационных газах, до S03 пред­ставлена на рис. 5.7. Агломерационные газы, содержа­щие S02, проходят грубую очистку от пыли в инерци­онном пылеуловителе и тонкую очистку в электрофиль­тре. Затем эти газы подогревают со 150 до 450 °С нагре­тым воздухом, охлаждающим агломерат. Превращение S02 в S03 происходит в контактном аппарате. После этого агломерационные газы охлаждают до 250 °С в теп­лообменнике воздухом, подаваемым на охлаждение аг­ломерата. Образовавшийся при охлаждении туман сер­ной кислоты улавливают электрофильтром. Очищенный воздух из электрофильтра выбрасывают в атмосферу, а серную кислоту сливают в сборник и используют в ка­честве товарного продукта. Данная схема очистки тре­бует существенной переделки агломерационной машины.

1 - инерционный пылеуловитель; 2 - электрофильтр для тон­кой очистки газов от пыли; 3 - контактный -аппарат для окис­ления S02 в S03; 4 - теплообменник для охлаждения газов и выделения из них серной кислоты; 5 - электрофильтр для улавливания серной кислоты

Рисунок 5.7 - Схема процесса очистки дымовых газов от S02.

Разновидностью описанного способа очистки газов от S02 является процесс «Кийоура ТИТ», разработанный в Японии. Данный процесс отличается тем, что окислен­ный горячий газ охлаждают до температуры ниже точ­ки росы серной кислоты и вводят в газовый поток газо­образный аммиак, который взаимодействует с S02 с об­разованием сульфата аммония. Последний образуется в виде крупных кристаллов (≈100 мкм), благодаря че­му хорошо улавливается в электрофильтрах.

Разработаны схемы последовательного двойного кон­тактного окисления S02. В одной из этих схем газы пос­ле окисления в первом контактном аппарате и отделения из них серной кислоты поступают во второй кон­тактный аппарат. Благодаря этому общая степень очи­стки является относительно высокой. Недостатком дан­ного способа является большой расход тепла на нагрев газов перед вторым контактным аппаратом и большое число аппаратуры. Агломерационные газы содержат наряду с S02 также СО, которая неблагоприятно влияет на процесс контакт­ного окисления S02 в S03. Установлено, например, что в присутствии СО при 450 °С и содержании 0,4% S02, объемной скорости газа 12 000 ч-1 степень окисления S02 снижается с 90 до 80%.

Таким образом, очистка агломерационного газа в контактных аппаратах по схеме очистки дымового газа котельных недостаточно эффективна. Поэтому целесо­образно применять комплексную очистку газа от S02 и СО, т. е. окислять СО в СО2 на палладиевом катализа­торе. При такой схеме очистки достигают подачи на ва­надиевый катализатор газа, очищенного от СО, и повы­шения его температуры примерно на 100 °С за счет окис­ления СО в СО2. В результате этого на ванадиевом катализаторе достигают необходимой температуры.



Дата добавления: 2017-09-01; просмотров: 1552;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.025 сек.